

Welcome to the Hyperion documentation!

This is the documentation for the Hyperion project (which is based on
Python For the Lab [http://www.pythonforthelab.com]). It is the
software to control devices in the Kuipers lab
(Kuipers Lab [http://kuiperslab.tudelft.nl/]) group at QN, TU Delft.

Index for this documentation

Contents:

	About

	Overview

	Features
	Logging

	Easy connection

	Lantz-compatibility

	‘smart’ scan

	Master GUI

	Hyperion Architecture
	General structure

	Important concepts

	Detailed documentation
	Controllers

	Experiment

	Instruments

	Testing

	Tools

	View and GUI

	Hyperion Core Utilities

	How to install

	Authors

About

The Hyperion package is designed to help you to build your application
to control a complex experimental setup. It should be seen as a scaffold to
build the instrumentation software you need for the unique application or
experiment you are working on.

Hyperion is under continuous development and started at the
Kuipers Lab [https://kuiperslab.tudelft.nl/] at
Technical University Delft. We made special efforts to solve the
specific problems we encounter at the lab when developing software that
automatizes repetitive tasks and allows researches to perform reproducible
experiments.

Overview

Common framework to glue together different devices
in order to control a complex experiment.

TO DO: Show examples on how it works

Features

Here we mention some of the features we find interesting to remark.

Logging

We have an advanced and easy to configure logging implementation that provides you full record
of what the program is doing.

Easy connection

Lantz-compatibility

We use Lantz as a dependency and we made special efforts to be completely compatible.

‘smart’ scan

Master GUI

We developed what we call a Master GUI where you can easily add your instruments and experiments using the
basic canvas we developed.

Hyperion Architecture

In this project we try to use general structure known as MVC: Model, View, Controller,
used for websites. We take some ideas from there and put it together with some of our ideas.

In a nutshell, we use an onion principle to isolate the code that interacts
with the instruments directly from the code that builds up the user interface.

General structure

The controller refers to the lowest level, where the actual
communication with the devices happens. We use the language
of the devices at this level.

The instrument is an intermediate layer where we abstract the
specifics of the device into a more general mode.
This helps to adapt to the view layer. It is the name we give to the model layer in
the MVC, since it is more suitable for instrumentation projects.

Several instruments are condensed together to form an experiment
where you can perform different measurements. In the folder examples
you can find a few explanatory files that show how to use the complete package.

The view is all that concerns the graphical user interface (GUI) of the
applications. It consist of files that build up the GUI and some extra python
files to load all the modules needed to run it. Under the hook, this uses the
classes from the lower levels. You can have a GUI for an instrument, that
connects only to one device or a GUI for an experiment that connects to several
devices. The design principle here is that any experiment and measurement should
be independent of the view layer and thus can be run by just running code up to the
experiment layer (not using the view layer). Then the view layer can be
optional for users that require the graphical control of their experiment.

Important concepts

Controller:

Instrument:

Meta-Instrument:

Experiment:

View:

Detailed documentation

Here you can see the detailed documentation of all the objects in the package.

Contents:

	Controllers
	AOTF controller

	Agilent 33522A controller

	ANC350 Attocube Controller

	Base controller

	Cobolt 08NLD

	Example controller

	Generic Serial Controller

	Hydraharp400 controller

	LCC25 (thorlabs) driver

	Osa controller

	SK polarization driver

	Stanford SR830

	Thorlabs motor controller

	RS 1316 driver

	Experiment

	Instruments
	Base (Meta) Instrument

	Example Instrument

	AOTF instrument

	Instrument for the function generator

	SK Polarimeter

	LCC25 (thorlabs) model

	Hydraharp Instrument

	Osa Instrument

	ANC350 Attocube Instrument

	Thorlabs thorlabs_motor Instrument

	Winspec Instrument

	Beam Flags Instrument

	Testing
	Unit tests

	Tools
	Array Tools

	Saving tools

	UI tools

	View and GUI

	Hyperion Core Utilities
	Explanation of how to use logging

Controllers

Here we group all the controllers we use for the Hyperion project.

Current controllers:

	AOTF controller

	Agilent 33522A controller

	ANC350 Attocube Controller

	Base controller

	Cobolt 08NLD

	Example controller

	Generic Serial Controller

	Hydraharp400 controller

	LCC25 (thorlabs) driver

	Osa controller

	SK polarization driver

	Stanford SR830

	Thorlabs motor controller

	RS 1316 driver

AOTF controller

This controller (aa_modd18012.py) supplies one class with several methods to communicate
with the AOTF driver from AA optoelectronics model: 1MODD18012_0074

	copyright

	2020by Hyperion Authors, see AUTHORS for more details.

	license

	BSD, see LICENSE for more details.

	
class hyperion.controller.aa.aa_modd18012.AaModd18012(settings)

	controller class for the driver aa_mod18012 from AA optoelelectronics.
This class has all the methods to communicate using serial.

	NOTE: Our model has different ranges of frequency (see data sheet)

	Line 1 to 6: 82-151 MHz (this drives short wavelengths)
Line 7 to 8: 68-82 MHz (this drives long wavelengths)

	Parameters

	settings (dict) – this includes all the settings needed to connect to the device in question.

	
blanking(state, mode)

	Define the blanking state. If True (False), all channels are on (off).
It can be set to ‘internal’ or ‘external’, where external means that the modulation voltage
of the channel will be used to define the channel output.

	Parameters

	
	state (logical) – State of the blanking

	mode (string) – external or internal. external is used to follow TTL external modulation

	
check_channel(channel)

	Method to check the key of the channel is correct

	Parameters

	channel (int) – channel to use

	Returns

	channel

	Return type

	int

	
check_freq(channel, value)

	Checks if the frequency asked is valid for the desired channel.
Specific of our device. If it is not, it gives the right value.

	Parameters

	
	channel (int) – channel to use (can be from 1 to 8 inclusive)

	value (float) – Frequency value in MHz. If 0 is given,
the DEFAULTS[‘frequency’] value is used for the corresponding channel.

	Returns

	The channel and value back unless an error.

	Return type

	int, new_channel

	
check_power(value)

	checks if the power is in the range supported by the device.
Range = (0 , 22) dBm. Gives an error if value is not in the range

	Parameters

	value (float) – power value in dBm

	
enable(channel, state)

	Enable single channels.

	Parameters

	
	channel – channel to use (can be from 1 to 8 inclusive)

	state (logical) – true for on and false for off

	Type

	channel: int

	Returns

	state

	Return type

	logical

	
finalize()

	Closes the connection to the device

	
get_states()

	Gets the status of all the channels

	Returns

	message from the driver describing all channel state

	Return type

	str

	
initialize()

	Initialize the device.
It actually connects to the device.

	
query(message)

	Writes and Reads the answer from the device.
Basically this method is a write followed by a read with a 10ms wait in the middle.

	Parameters

	message (string) – Message to be passed to the serial port.

	Returns

	The reply from the device.

	Return type

	string

	
read()

	Reads message from the device. It reads until the buffer is clean.

	Returns

	The messages in the buffer of the device. It removes the end of line characters.

	Return type

	string

	
set_all(channel, freq, power, state, mode)

	Sets Frequency, power, and state of channel.

	Parameters

	
	channel (int) – channel to use (can be from 1 to 8 inclusive)

	freq (float) – Frequency value in MHz (range depends on the channel)

	power (float) – Power to set in dBm (0 to 22)

	state (logical) – true for on and false for off

	mode (string) – ‘internal’ or ‘external’

	
set_frequency(channel, freq)

	This function sets RF frequency for a given channel.
The device has 8 channels.
Channels 1-6 work in the range 82-151 MHz
Channels 7-8 work in the range 68-82 MHz

	Parameters

	
	channel (int) – channel to set the frequency.

	freq (float) – Frequency to set in MHz (it has accepted ranges that depends on the channel)

	
set_operating_mode(channel, mode)

	Select the operating mode. Can be internal or external.

	Parameters

	
	channel (int) – channel number

	mode (str) – ‘internal’ or ‘external’

	
set_powerdb(channel, value)

	Power for a given channel (in dBm).
Range: (0,22) dBm

	Parameters

	
	channel (int) – channel to use

	value (float) – power value in dBm

	
store()

	stores in the internal memory the values

	
write(message)

	Sends the message to the device.

	Parameters

	message (string) – message to send to the device.

	Returns

	the response from the device.

	Return type

	string

	
class hyperion.controller.aa.aa_modd18012.AaModd18012Dummy(settings={'dummy': True, 'port': 'COM00'})

	This is the dummy controller for the AaModd18012. The idea is to load this class instead of the real one
to do testing of higher level functions without the need of the real device to be connected or working.

The logic is that this dummy device will respond as the real device would, with the correct type
and size of information is expected.

This class inherits from the real device and the idea is to re-write only the init, the write
and the read, so all the other functions remain the same and functioning.

The specific way to achieve this will be different for every device, so it has to be done separately.

To do so, we use a yaml file that tells the dummy class what are the properties of the device. For example,
one property for the LCC25 is voltage1, which is the voltage for channel 1. Then from this you can build 2
commands: voltage1? to ask what is the value and voltage1=1 to set it to the value 1. So we build a command
list using the CHAR ? and = for each of this properties.

	
load_properties()

	This method loads a yaml file with a dictionary with the available properties for the
AaModd18012 and some defaults values. This dictionary is saved in properties and will be modified
when a variable is writen, so the dummy device will respond with the previously set value.

	
read()

	Dummy read. Reads the response buffer

	
write(msg)

	Dummy write. It will compare the msg with the COMMANDS

	Parameters

	msg (str) – Message to write

Agilent 33522A controller

This is the controller class for the Agilent 33522A function generator.
Based on pyvisa to send commands to the USB.

	copyright

	2020by Hyperion Authors, see AUTHORS for more details.

	license

	BSD, see LICENSE for more details.

	
class hyperion.controller.agilent.agilent33522A.Agilent33522A(settings)

	Agilent 33522A arbitrary waveform generator, 30MHz, 2 channels.
It takes a dictionary that passes the settings needed. In this case it needs

instrument_id : ‘8967’ # instrument id for the device you have
dummy : False

	Parameters

	settings (dict) – a dictionary for the settings you need to send to the device

	
check_channel(channel)

	Function to check if the channel is present in the system.

	Parameters

	channel (int) – number of channel. it can be 1 or 2 for this model

	Returns

	The number of the channel

	Return type

	string

	
enable_output(channel, state)

	Enable the output of channel 1 or 2

	Parameters

	
	channel (int) – To activate or deactivate

	state (logical) – logical state. True sets the output on and false off.

	
enable_voltage_limits(channel, state)

	
	This function enables the limits for the maximum and minimum voltage

	output that can be generated by each channel. Those values are set with
the method set_voltage_limits(channel, high, low).

This function enables this setting by putting state = true and disables
it by putting state = false. When enable, setting a voltage outside the permitted
values will give an error (not in python, in the device)

	Parameters

	
	channel (int) – number of channel. it can be 1 or 2 for this model

	state (logical) – True to turn on, False to turn off

	
finalize()

	This methods closes the visa connection

	
get_enable_output(channel)

	Get the status of the output. 0 is off, 1 is on.

	Parameters

	channel (int) – can be 1 or 2 for this model

	Returns

	Status of the output

	Return type

	logical

	
get_frequency(channel)

	This functions reads the frequency output for the channel

	Parameters

	channel (int) – number of channel. it can be 1 or 2 for this model

	Returns

	Frequency value currently in the device in Hz

	Return type

	string

	
get_state_voltage_limits(channel)

	This function generator can set a minimum and maximum voltage value that will not be exceeded
to protect the device that is being feed.

	Parameters

	channel (int) – number of channel. it can be 1 or 2 for this model

	Returns

	voltage limits

	Return type

	string

	
get_system_error()

	This functions returns the error message

	Returns

	error message

	Return type

	string

	
get_voltage(channel)

	This functions gets the voltage in the channel

	Parameters

	channel (int) – number of channel. it can be 1 or 2 for this model

	Returns

	current voltage Vpp in the device

	Return type

	string

	
get_voltage_high(channel)

	This functions sets the high voltage to the channel

	Parameters

	channel (int) – number of channel. it can be 1 or 2 for this model

	Returns

	High voltage value

	Return type

	string

	
get_voltage_limits(channel)

	Gets the set values for the voltage limits, high and low.

	Parameters

	channel (int) – number of channel. it can be 1 or 2 for this model

	Returns

	array with [high_value, low_value] in volts

	Return type

	array of strings

	
get_voltage_limits_state(channel)

	Checks the status of the voltage limits. It can be on or off

	Parameters

	channel (int) – number of channel. it can be 1 or 2 for this model

	Returns

	voltage limit state (logical)

	Return type

	string

	
get_voltage_low(channel)

	This functions sets the low voltage to the channel

	Parameters

	channel (int) – number of channel. it can be 1 or 2 for this model

	Returns

	Low voltage set on the device

	Return type

	string

	
get_voltage_offset(channel)

	This functions gets the DC offset voltage to the channel

	Parameters

	channel (int) – number of channel. it can be 1 or 2 for this model

	Returns

	current offset in the device

	Return type

	string

	
get_waveform(channel)

	Get the function set for the output.
The available functions are stored at FUNCTIONS = [‘SIN’,’SQU’,’TRI’,’RAMP’,’PULS’,’PRBS’,’NOIS’,’ARB’,’DC’]

	Parameters

	channel (int) – number of channel. it can be 1 or 2 for this model
the expected output is on of the items in FUNCTIONS

	Returns

	type of function in use

	Return type

	string

	
idn()

	Ask the device for its identification

	Returns

	identification of the fun gen

	Return type

	string

	
initialize()

	This method opens the communication with the device.

	
query(msg)

	Sequential read and write
:param msg: message to write to the device
:type msg: string

	
read()

	Read buffer

	
set_frequency(channel, freq)

	This functions sets the frequency output for the channel

	Parameters

	
	channel (int) – number of channel. it can be 1 or 2 for this model

	freq (float) – desired frequency in Hz

	
set_voltage(channel, voltage)

	This functions sets the Vpp voltage to the channel

	Parameters

	
	channel (int) – number of channel. it can be 1 or 2 for this model

	voltage (float) – voltage value for the high voltage in volts (with sign)

	
set_voltage_high(channel, voltage)

	This functions sets the high voltage to the channel

	Parameters

	
	channel (int) – number of channel. it can be 1 or 2 for this model

	voltage (float) – voltage value for the high voltage in volts (with sign)

	
set_voltage_limits(channel, high, low)

	Set a limit to the output values

For this function generator you can set a minimum and maximum voltage
value that will not be exceeded to protect the device that is being feed.

NOTE: setting the values does not activate this feature. To enable/disable it use the function
enable_voltage_limits(channel,state)

	Parameters

	
	channel (int) – number of channel. it can be 1 or 2 for this model

	high (float) – High maximum voltage value for the output in Volts

	low (float) – High maximum voltage value for the output in VOlts

	
set_voltage_low(channel, voltage)

	This functions sets the low voltage (in volts) to the channel.

	Parameters

	
	channel (int) – number of channel. it can be 1 or 2 for this model

	voltage (float) – voltage value for the low voltage in volts (with sign)

	
set_voltage_offset(channel, voltage)

	This functions sets the DC offset voltage to the channel

	Parameters

	
	channel (int) – number of channel. it can be 1 or 2 for this model

	voltage (float) – voltage value for the DC offset voltage in volts (with sign)

	
set_waveform(channel, fun)

	Get the function set for the output. The available functions are stored at
FUNCTIONS = [‘SIN’,’SQU’,’TRI’,’RAMP’,’PULS’,’PRBS’,’NOIS’,’ARB’,’DC’]

	Parameters

	
	channel (int) – number of channel. it can be 1 or 2 for this model

	fun (string) – One of the functions defined in FUNCTIONS. Ex: ‘SIN”

	
write(msg)

	Write in the device buffer
:param msg: message to write to the device
:type msg: string

	
class hyperion.controller.agilent.agilent33522A.Agilent33522ADummy(settings)

	This is the dummy controller for the Agilent33522A.

The idea is to load this class instead of the real one
to do testing of higher level functions without the need of the real device to be connected or working.

The logic is that this dummy device will respond as the real device would, with the correct type
and size of information is expected.

This class inherits from the real device and the idea is to re-write only the init, the write
and the read, so all the other functions remain the same and functioning.

The specific way to achieve this will be different for every device, so it has to be done separately.

To do so, we use a yaml file that tells the dummy class what are the properties of the device. For example,
one property for the LCC25 is voltage1, which is the voltage for channel 1. Then from this you can build 2
commands: voltage1? to ask what is the value and voltage1=1 to set it to the value 1. So we build a command
list using the CHAR ? and = for each of this properties.

	
load_properties()

	This method loads a yaml file with a dictionary with the available properties for the
LCC25 and some defaults values. This dictionary is saved in properties and will be modified
when a variable is writen, so the dummy device will respond with the previously set value.

	
read()

	Dummy read. Reads the response buffer

	
write(msg)

	Dummy write. It will compare the msg with the COMMANDS

	Parameters

	msg (str) – Message to write

ANC350 Attocube Controller

This is the controller level of the position ANC350 from Attocube (in the Montana)

This code is strongly based and using PyANC350, which was written by Rob Heath; rob@robheath.me.uk; 24-Feb-2015;
It was taken from github in August 2019 by Irina Komen and made to work with Hyperion

Copyright (c) 2018 Rob Heath

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Description from Rob Heath:
PyANC350 is a control scheme suitable for the Python coding style for the attocube ANC350 closed-loop position system.

It implements ANC350lib, which in turn depends on anc350v2.dll which is provided by attocube in the ANC350_DLL folders on the driver disc.
This in turn requires nhconnect.dll and libusb0.dll. Place all of these in the same folder as this module (and that of ANC350lib).

Unlike ANC350lib which is effectively a re-imagining of the C++ header, PyANC350 is intended to behave as one might expect Python to.
This means: returning values; behaving as an object.

At present this only addresses the first ANC350 connected to the machine.

	Usage:

	
	instantiate Positioner() class to begin, eg. pos = Positioner().

	methods from the ANC350v2 documentation are implemented such that function PositionerGetPosition(handle, axis, &pos) becomes position = pos.getPosition(axis), PositionerCapMeasure(handle,axis,&cap) becomes cap = pos.capMeasure(axis), and so on. Return code handling is within ANC350lib.

	bitmask() and debitmask() functions have been added for convenience when using certain functions (e.g. getStatus,moveAbsoluteSync)

	for tidiness remember to Positioner.close() when finished!

Important NOTE:

This code assumes that the following files are stored in this folder (hyperion/controller/attocube/)

	anc350v2.dll

	anc350v2.lib

	libusb0.dll

And the (actor) calibration files:

	ANPx101-A3-1079.aps

	ANPx101-A3-1087.aps

	ANPz102-F8-393.aps

You should get these files from the manufacturer (except for libusb0.dll).

	
class hyperion.controller.attocube.anc350.Anc350(settings)

	Class for the ANC350 controller

	Parameters

	settings (dict) – this includes all the settings needed to connect to the device in question, in this case just dummy.

	
acInEnable(axis, state)

	
UNUSED

Activates/deactivates AC input of addressed axis; only applicable for dither axes.

	
amplitude(axis, amp)

	
Set the amplitude setpoint of the Stepper in mV.

You need to set the amplitude, max 60V.

At room temperature you need 30V for x and y and 40V for z.

At low temperature that is higher, 40V or even 50V.

Higher amplitude influences step size though.

	Parameters

	
	axis (integer) – axis number from 0 to 2 for steppers

	amp (integer) – amplitude to be set to the Stepper in mV, between 0 and 60V; needs to be an integer!

	
amplitudeControl(axis, mode)

	
Selects the type of amplitude control in the Stepper.

The amplitude is controlled by the positioner to hold the value constant determined by the selected type of amplitude control.

I thought for closed loop it needs to be set in Step Width mode, nr. 2.

However, that gives issues, since sometimes the amplitude is not high enough to make the thing move at all.

So Amplitude control mode, nr. 1, seems better.

	Parameters

	
	axis (integer) – axis number from 0 to 2 for steppers

	mode (integer) – Mode takes values 0: speed, 1: amplitude, 2: step size

	
bandwidthLimitEnable(axis, state)

	
UNUSED

activates/deactivates the bandwidth limiter of the addressed axis. only applicable for scanner axes.

	
capMeasure(axis)

	
Determines the capacitance of the piezo addressed by axis.

Pay attention: the 0 that you give to the ANC350lib.Int32 is the first Attocube device; not the first of the 6 positioners.

	Parameters

	axis (integer) – axis number from 0 to 2 for steppers and 3 to 5 for scanners

	Returns

	capacitance value in mF

	
check()

	Determines number of connected attocube controller devices and their respective hardware IDs.

	
clearStopDetection(axis)

	
UNUSED

when .setStopDetectionSticky() is enabled, this clears the stop detection status.

	
connect()

	
Establishes connection to the first attocube device found.

Pay attention: the 0 that you give to the ANC350lib.Int32 is the first attocube device; not the first of the 6 positioners.

	
dcInEnable(axis, state)

	
UNUSED

Activates/deactivates DC input of addressed axis; only applicable for scanner/dither axes.

	
dcLevel(axis, dclev)

	Sets the dc level of selected scanner (or maybe stepper, if you want).

	Parameters

	
	axis (integer) – axis number from 0 to 2 for steppers and 3 to 5 for scanners

	dclev (integer) – DC level in mV; needs to be an integer!

	
dutyCycleEnable(state)

	UNUSED
controls duty cycle mode.

	
dutyCycleOffTime(value)

	UNUSED
sets duty cycle off time.

	
dutyCyclePeriod(value)

	UNUSED
sets duty cycle period.

	
externalStepBkwInput(axis, input_trigger)

	
UNUSED

configures external step trigger input for selected axis. a trigger on this input results in a backwards single step.

input_trigger: 0 disabled, 1-6 input trigger.

	
externalStepFwdInput(axis, input_trigger)

	
UNUSED

configures external step trigger input for selected axis.

a trigger on this input results in a forward single step.

input_trigger: 0 disabled, 1-6 input trigger.

	
externalStepInputEdge(axis, edge)

	
UNUSED

configures edge sensitivity of external step trigger input for selected axis.

edge: 0 rising, 1 falling.

	
finalize()

	Closes connection to ANC350 device.

	
frequency(axis, freq)

	
Sets the frequency of selected stepper axis.

Higher means more noise and faster (= less precise?).

	Parameters

	
	axis (integer) – axis number from 0 to 2 for steppers

	freq (integer) – frequency in Hz, from 1Hz to 2kHz; needs to be an integer!

	
getAcInEnable(axis)

	
UNUSED

determines status of ac input of addressed axis. only applicable for dither axes.

	
getAmplitude(axis)

	
Determines the actual amplitude.

In case of standstill of the actor this is the amplitude setpoint.

In case of movement the amplitude set by amplitude control is determined.

	Parameters

	axis (integer) – axis number from 0 to 2 for steppers

	Returns

	measured amplitude in mV

	
getBandwidthLimitEnable(axis)

	
UNUSED

determines status of bandwidth limiter of addressed axis. only applicable for scanner axes.

	
getDcInEnable(axis)

	
UNUSED

determines status of dc input of addressed axis. only applicable for scanner/dither axes.

	
getDcLevel(axis)

	
Determines the status actual DC level on the scanner (or stepper).

Again: the 0 is for the number of controller units, not the 6 positioners.

	Parameters

	axis (integer) – axis number from 3 to 5 for scanners

	Returns

	measured DC level in mV

	
getFrequency(axis)

	Determines the frequency on the stepper.

	Parameters

	axis (integer) – axis number from 0 to 2 for steppers

	Returns

	measured frequency in Hz

	
getIntEnable(axis)

	Determines status of internal signal generation of addressed axis. only applicable for scanner/dither axes.

	Parameters

	axis (integer) – axis number from 3 to 5 for scanners

	Returns

	True if the INT mode is selected, False if not

	
getPosition(axis)

	
Determines actual position of addressed stepper axis.

Pay attention: the sensor resolution is specified for 200nm.

	Parameters

	axis (integer) – axis number from 0 to 2 for steppers

	Returns

	position in nm

	
getReference(axis)

	UNUSED
determines distance of reference mark to origin.

	
getReferenceRotCount(axis)

	UNUSED
determines actual position of addressed axis.

	
getRotCount(axis)

	UNUSED
determines actual number of rotations in case of rotary actuator.

	
getSpeed(axis)

	
Determines the actual speed.

In case of standstill of this actor this is the calculated speed resultingfrom amplitude setpoint, frequency, and motor parameters.

In case of movement this is measured speed.

	Parameters

	axis (integer) – axis number from 0 to 2 for steppers

	Returns

	speed in nm/s

	
getStatus(axis)

	
Determines the status of the selected axis.

It is not clear whether it also works for the scanner, or only for the stepper.

result: bit0 (moving) (+1), bit1 (stop detected) (+2), bit2 (sensor error) (+4), bit3 (sensor disconnected) (+8).

	Parameters

	axis (integer) – axis number from 0 to 2 for steppers and 3 to 5 for scanners

	Returns

	1: moving, 2: stop detected, 4: sensor error, 8: sensor disconnected

	
getStepwidth(axis)

	
Determines the step width.

In case of standstill of the motor this is the calculated step width resulting from amplitude setpoint, frequency, and motor parameters.

In case of movement this is measured step width.

	Parameters

	axis (integer) – axis number from 0 to 2 for steppers

	Returns

	stepwidth in nm

	
initialize()

	
Initializes the controller.

Checks for attocube controller units and connects to it.

Pay attention: there are 6 positioners, but only 1 controller; we connect to the 1.

	
intEnable(axis, state)

	Activates/deactivates internal signal generation of addressed axis; only applicable for scanner/dither axes.

	Parameters

	
	axis (integer) – axis number from 3 to 5 for scanners

	state (bool) – True is enabled, False is disabled

	
load(axis)

	
Loads a parameter file for actor configuration.

note: this requires a pointer to a char datatype.

the actor files are in this controller folder, their names are hard coded in the init.

note: Attocube called the up-down actor file ANPz, I called that axis YPiezo.

	Parameters

	axis (integer) – axis number from 0 to 2 for steppers and 3 to 5 for scanners

	
moveAbsolute(axis, position, rotcount=0)

	
Starts approach to absolute target position.

Previous movement will be stopped.

Rotcount optional argument, not in our case since we dont have rotation options.

	Parameters

	
	axis (integer) – axis number from 0 to 2 for steppers

	position (integer) – absolute target position in nm; needs to be an integer!

	rotcount – optional argument position units are in ‘unit of actor multiplied by 1000’ (generally nanometres)

	
moveAbsoluteSync(bitmask_of_axes)

	
UNUSED

Starts the synchronous approach to absolute target position for selected axis.

Previous movement will be stopped.

Target position for each axis defined by .setTargetPos() takes a bitmask of axes!

Not clear what’s the difference with moveAbsolute.

	Parameters

	bitmask_of_axes –

	
moveContinuous(axis, direction)

	Starts continuously positioning with set parameters for ampl and speed and amp control respectively.

	Parameters

	
	axis (integer) – axis number from 0 to 2 for steppers

	direction (integer) – can be 0 (forward) or 1 (backward)

	
moveReference(axis)

	
UNUSED

Starts approach to reference position.

Previous movement will be stopped.

No idea whats the difference with moveRelative

	Parameters

	axis (integer) – axis number from 0 to 2 for steppers

	
moveRelative(axis, position, rotcount=0)

	
Starts approach to relative target position.

Previous movement will be stopped.

Rotcount optional argument, not in our case since we dont have rotation options.

	Parameters

	
	axis (integer) – axis number from 0 to 2 for steppers

	position (integer) – relative target position in nm, can be both positive and negative; needs to be an integer!

	rotcount – optional argument position units are in ‘unit of actor multiplied by 1000’ (generally nanometres)

	
moveSingleStep(axis, direction)

	
Starts a one-step positioning, where the stepwidht is determined by the amplitude and frequency.

Previous movement will be stopped.

	Parameters

	
	axis (integer) – axis number from 0 to 2 for steppers

	direction – can be 0 (forward) or 1 (backward)

	
quadratureAxis(quadratureno, axis)

	
UNUSED

selects the axis for use with this trigger in/out pair.

quadratureno: number of addressed quadrature unit (0-2).

	
quadratureInputPeriod(quadratureno, period)

	
UNUSED

selects the stepsize the controller executes when detecting a step on its input AB-signal.

quadratureno: number of addressed quadrature unit (0-2). period: stepsize in unit of actor * 1000.

	
quadratureOutputPeriod(quadratureno, period)

	
UNUSED

selects the position difference which causes a step on the output AB-signal.

quadratureno: number of addressed quadrature unit (0-2). period: period in unit of actor * 1000.

	
resetPosition(axis)

	
UNUSED

sets the origin to the actual position.

	Parameters

	axis (integer) – axis number from 0 to 2 for steppers

	
sensorPowerGroupA(state)

	
UNUSED

switches power of sensor group A.

Sensor group A contains either the sensors of axis 1-3 or 1-2 dependent on hardware of controller.

	
sensorPowerGroupB(state)

	
UNUSED

switches power of sensor group B.

Sensor group B contains either the sensors of axis 4-6 or 3 dependent on hardware of controller.

	
setHardwareId(hwid)

	UNUSED
sets the hardware ID for the device (used to differentiate multiple devices).

	
setOutput(axis, state)

	
UNUSED

activates/deactivates the addressed axis.

no idea what that means, but sounds interesting.

	Parameters

	
	axis –

	state –

	
setStopDetectionSticky(axis, state)

	
UNUSED

when enabled, an active stop detection status remains active until cleared manually by .clearStopDetection().

Is this what in Daisy is called hump detection? Than it might be useful.

	Parameters

	
	axis (integer) – axis number from 0 to 2 for steppers

	state –

	
setTargetGround(axis, state)

	UNUSED
when enabled, actor voltage set to zero after closed-loop positioning finished.

	
setTargetPos(axis, pos, rotcount=0)

	UNUSED
sets target position for use with .moveAbsoluteSync().

	
singleCircleMode(axis, state)

	
UNUSED

switches single circle mode.

In case of activated single circle mode the number of rotations are ignored and the shortest way to target position is used. Only relevant for rotary actors.

	
staticAmplitude(amp)

	UNUSED
sets output voltage for resistive sensors.

	
stepCount(axis, stps)

	UNUSED
configures number of successive step scaused by external trigger or manual step request. steps = 1 to 65535.

	
stopApproach(axis)

	
Stops approaching target/relative/reference position.

DC level of affected axis after stopping depends on setting by .setTargetGround().

Dont know for sure whats the difference with stopMoving.

	Parameters

	axis (integer) – axis number from 0 to 2 for steppers

	
stopDetection(axis, state)

	
UNUSED

switches stop detection on/off.

Is this what in Daisy is called hump detection? Than it might be useful.

	Parameters

	
	axis (integer) – axis number from 0 to 2 for steppers

	state –

	
stopMoving(axis)

	
UNUSED

stops any positioning, DC level of affected axis is set to zero after stopping.

	Parameters

	axis –

	
trigger(triggerno, lowlevel, highlevel)

	
UNUSED

sets the trigger thresholds for the external trigger.

triggerno is 0-5, lowlevel/highlevel in units of actor * 1000.

	
triggerAxis(triggerno, axis)

	UNUSED
selects the corresponding axis for the addressed trigger. triggerno is 0-5.

	
triggerEpsilon(triggerno, epsilon)

	UNUSED
sets the hysteresis of the external trigger. epsilon in units of actor * 1000.

	
triggerModeIn(mode)

	
UNUSED

selects the mode of the input trigger signals.

state: 0 disabled - inputs trigger nothing,

1 quadrature - three pairs of trigger in signals are used to accept AB-signals for relative positioning,

2 coarse - trigger in signals are used to generate coarse steps.

	
triggerModeOut(mode)

	
UNUSED

selects the mode of the output trigger signals.

state: 0 disabled - inputs trigger nothing,

1 position - the trigger outputs reacts to the defined position ranges with the selected polarity,

2 quadrature - three pairs of trigger out signals are used to signal relative movement as AB-signals, 3 IcHaus - the trigger out signals are used to output the internal position signal of num-sensors.

	
triggerPolarity(triggerno, polarity)

	UNUSED

sets the polarity of the external trigger, triggerno: 0-5, polarity: 0 low active, 1 high active.

	
updateAbsolute(axis, position)

	
UNUSED

update s target position for a running approach.

function has lower performance impact on running approach compared to .moveAbsolute().

position units are in ‘unit of actor multiplied by 1000’ (generally nanometres).

	Parameters

	
	axis –

	position –

	
class hyperion.controller.attocube.anc350.Anc350Dummy(settings)

	

	
hyperion.controller.attocube.anc350.bitmask(input_array)

	
takes an array or string and converts to integer bitmask.

reads from left to right e.g. 0100 = 2 not 4.

	
hyperion.controller.attocube.anc350.debitmask(input_int, num_bits=False)

	
takes a bitmask and returns a list of which bits are switched.

reads from left to right e.g. 2 = [0, 1] not [1, 0].

Base controller

This is a base class for a controller.
The idea is to use this class as the parent class of any driver you are writing by hand.
By doing so, you gain the possibility of using the context manner for the ‘with’ block
and you how which basic methods you should write.
We strongly recommend you also use the logging, so you can keep track of what is going on
with your program at every step.

	
class hyperion.controller.base_controller.BaseController(settings={})

	General class for controller. Use it as parent of your (home-made) controller.

	
finalize()

	This method closes the connection to the device.
It is ran automatically if you use a with block

	
idn()

	Identify command

	
initialize()

	Starts the connection to the device.

Cobolt 08NLD

This is the controller for the Cobotl laser 08NLD

Based on the driver for laser 06-01 series by Vasco Tenner, available in lantz.drivers.laser.cobolt08NLD

	copyright

	2020by Hyperion Authors, see AUTHORS for more details.

	license

	BSD, see LICENSE for more details.

	
class hyperion.controller.cobolt.cobolt08NLD.Cobolt08NLD(resource_name, name=None, **kwargs)

	controller class for the driver COBOLT 08-NLD Series laser.
This class has all the methods to communicate using serial.

	
analog_mod

	Pimped Python property for interfacing with instruments. Can be used as
a decorator.

Processors can registered for each arguments to modify their values before
they are passed to the body of the method. Two standard processors are
defined: values and units and others can be given as callables in the
get_funcs parameter.

If a method contains multiple arguments, use the item method.

Feat has the following nested behaviors:

	Feat: lantz specific modifiers: values, units, limits, procs, read_once)

	LockProperty: locks the parent drive (for multi-threading apps)

	ObservableProperty: emits a signal when the cached value has changed (via set/get)

	SetCacheProperty: prevents unnecessary set operations by comparing the value in the cache

	TransformProperty: transform values according to predefined rules.

	LogProperty: log get and set operations

	StatsProperty: record number of calls and timing stats for get/set/failed operations.

	Finally the actual getter or setter is called.

	
analogli_mod

	Pimped Python property for interfacing with instruments. Can be used as
a decorator.

Processors can registered for each arguments to modify their values before
they are passed to the body of the method. Two standard processors are
defined: values and units and others can be given as callables in the
get_funcs parameter.

If a method contains multiple arguments, use the item method.

Feat has the following nested behaviors:

	Feat: lantz specific modifiers: values, units, limits, procs, read_once)

	LockProperty: locks the parent drive (for multi-threading apps)

	ObservableProperty: emits a signal when the cached value has changed (via set/get)

	SetCacheProperty: prevents unnecessary set operations by comparing the value in the cache

	TransformProperty: transform values according to predefined rules.

	LogProperty: log get and set operations

	StatsProperty: record number of calls and timing stats for get/set/failed operations.

	Finally the actual getter or setter is called.

	
autostart

	Pimped Python property for interfacing with instruments. Can be used as
a decorator.

Processors can registered for each arguments to modify their values before
they are passed to the body of the method. Two standard processors are
defined: values and units and others can be given as callables in the
get_funcs parameter.

If a method contains multiple arguments, use the item method.

Feat has the following nested behaviors:

	Feat: lantz specific modifiers: values, units, limits, procs, read_once)

	LockProperty: locks the parent drive (for multi-threading apps)

	ObservableProperty: emits a signal when the cached value has changed (via set/get)

	SetCacheProperty: prevents unnecessary set operations by comparing the value in the cache

	TransformProperty: transform values according to predefined rules.

	LogProperty: log get and set operations

	StatsProperty: record number of calls and timing stats for get/set/failed operations.

	Finally the actual getter or setter is called.

	
clear_fault = <lantz.core.action.Action object>

	

	
clear_fault_async(*args, **kwargs)

	(Async) Clear fault

	
ctl_mode

	Pimped Python property for interfacing with instruments. Can be used as
a decorator.

Processors can registered for each arguments to modify their values before
they are passed to the body of the method. Two standard processors are
defined: values and units and others can be given as callables in the
get_funcs parameter.

If a method contains multiple arguments, use the item method.

Feat has the following nested behaviors:

	Feat: lantz specific modifiers: values, units, limits, procs, read_once)

	LockProperty: locks the parent drive (for multi-threading apps)

	ObservableProperty: emits a signal when the cached value has changed (via set/get)

	SetCacheProperty: prevents unnecessary set operations by comparing the value in the cache

	TransformProperty: transform values according to predefined rules.

	LogProperty: log get and set operations

	StatsProperty: record number of calls and timing stats for get/set/failed operations.

	Finally the actual getter or setter is called.

	
current_sp

	Pimped Python property for interfacing with instruments. Can be used as
a decorator.

Processors can registered for each arguments to modify their values before
they are passed to the body of the method. Two standard processors are
defined: values and units and others can be given as callables in the
get_funcs parameter.

If a method contains multiple arguments, use the item method.

Feat has the following nested behaviors:

	Feat: lantz specific modifiers: values, units, limits, procs, read_once)

	LockProperty: locks the parent drive (for multi-threading apps)

	ObservableProperty: emits a signal when the cached value has changed (via set/get)

	SetCacheProperty: prevents unnecessary set operations by comparing the value in the cache

	TransformProperty: transform values according to predefined rules.

	LogProperty: log get and set operations

	StatsProperty: record number of calls and timing stats for get/set/failed operations.

	Finally the actual getter or setter is called.

	
digital_mod

	Pimped Python property for interfacing with instruments. Can be used as
a decorator.

Processors can registered for each arguments to modify their values before
they are passed to the body of the method. Two standard processors are
defined: values and units and others can be given as callables in the
get_funcs parameter.

If a method contains multiple arguments, use the item method.

Feat has the following nested behaviors:

	Feat: lantz specific modifiers: values, units, limits, procs, read_once)

	LockProperty: locks the parent drive (for multi-threading apps)

	ObservableProperty: emits a signal when the cached value has changed (via set/get)

	SetCacheProperty: prevents unnecessary set operations by comparing the value in the cache

	TransformProperty: transform values according to predefined rules.

	LogProperty: log get and set operations

	StatsProperty: record number of calls and timing stats for get/set/failed operations.

	Finally the actual getter or setter is called.

	
enabled

	Pimped Python property for interfacing with instruments. Can be used as
a decorator.

Processors can registered for each arguments to modify their values before
they are passed to the body of the method. Two standard processors are
defined: values and units and others can be given as callables in the
get_funcs parameter.

If a method contains multiple arguments, use the item method.

Feat has the following nested behaviors:

	Feat: lantz specific modifiers: values, units, limits, procs, read_once)

	LockProperty: locks the parent drive (for multi-threading apps)

	ObservableProperty: emits a signal when the cached value has changed (via set/get)

	SetCacheProperty: prevents unnecessary set operations by comparing the value in the cache

	TransformProperty: transform values according to predefined rules.

	LogProperty: log get and set operations

	StatsProperty: record number of calls and timing stats for get/set/failed operations.

	Finally the actual getter or setter is called.

	
enter_mod_mode = <lantz.core.action.Action object>

	

	
enter_mod_mode_async(*args, **kwargs)

	(Async) Enter modulation mode

	
idn

	Pimped Python property for interfacing with instruments. Can be used as
a decorator.

Processors can registered for each arguments to modify their values before
they are passed to the body of the method. Two standard processors are
defined: values and units and others can be given as callables in the
get_funcs parameter.

If a method contains multiple arguments, use the item method.

Feat has the following nested behaviors:

	Feat: lantz specific modifiers: values, units, limits, procs, read_once)

	LockProperty: locks the parent drive (for multi-threading apps)

	ObservableProperty: emits a signal when the cached value has changed (via set/get)

	SetCacheProperty: prevents unnecessary set operations by comparing the value in the cache

	TransformProperty: transform values according to predefined rules.

	LogProperty: log get and set operations

	StatsProperty: record number of calls and timing stats for get/set/failed operations.

	Finally the actual getter or setter is called.

	
interlock

	Pimped Python property for interfacing with instruments. Can be used as
a decorator.

Processors can registered for each arguments to modify their values before
they are passed to the body of the method. Two standard processors are
defined: values and units and others can be given as callables in the
get_funcs parameter.

If a method contains multiple arguments, use the item method.

Feat has the following nested behaviors:

	Feat: lantz specific modifiers: values, units, limits, procs, read_once)

	LockProperty: locks the parent drive (for multi-threading apps)

	ObservableProperty: emits a signal when the cached value has changed (via set/get)

	SetCacheProperty: prevents unnecessary set operations by comparing the value in the cache

	TransformProperty: transform values according to predefined rules.

	LogProperty: log get and set operations

	StatsProperty: record number of calls and timing stats for get/set/failed operations.

	Finally the actual getter or setter is called.

	
ksw_enabled

	Pimped Python property for interfacing with instruments. Can be used as
a decorator.

Processors can registered for each arguments to modify their values before
they are passed to the body of the method. Two standard processors are
defined: values and units and others can be given as callables in the
get_funcs parameter.

If a method contains multiple arguments, use the item method.

Feat has the following nested behaviors:

	Feat: lantz specific modifiers: values, units, limits, procs, read_once)

	LockProperty: locks the parent drive (for multi-threading apps)

	ObservableProperty: emits a signal when the cached value has changed (via set/get)

	SetCacheProperty: prevents unnecessary set operations by comparing the value in the cache

	TransformProperty: transform values according to predefined rules.

	LogProperty: log get and set operations

	StatsProperty: record number of calls and timing stats for get/set/failed operations.

	Finally the actual getter or setter is called.

	
mod_mode

	Pimped Python property for interfacing with instruments. Can be used as
a decorator.

Processors can registered for each arguments to modify their values before
they are passed to the body of the method. Two standard processors are
defined: values and units and others can be given as callables in the
get_funcs parameter.

If a method contains multiple arguments, use the item method.

Feat has the following nested behaviors:

	Feat: lantz specific modifiers: values, units, limits, procs, read_once)

	LockProperty: locks the parent drive (for multi-threading apps)

	ObservableProperty: emits a signal when the cached value has changed (via set/get)

	SetCacheProperty: prevents unnecessary set operations by comparing the value in the cache

	TransformProperty: transform values according to predefined rules.

	LogProperty: log get and set operations

	StatsProperty: record number of calls and timing stats for get/set/failed operations.

	Finally the actual getter or setter is called.

	
operating_hours

	Pimped Python property for interfacing with instruments. Can be used as
a decorator.

Processors can registered for each arguments to modify their values before
they are passed to the body of the method. Two standard processors are
defined: values and units and others can be given as callables in the
get_funcs parameter.

If a method contains multiple arguments, use the item method.

Feat has the following nested behaviors:

	Feat: lantz specific modifiers: values, units, limits, procs, read_once)

	LockProperty: locks the parent drive (for multi-threading apps)

	ObservableProperty: emits a signal when the cached value has changed (via set/get)

	SetCacheProperty: prevents unnecessary set operations by comparing the value in the cache

	TransformProperty: transform values according to predefined rules.

	LogProperty: log get and set operations

	StatsProperty: record number of calls and timing stats for get/set/failed operations.

	Finally the actual getter or setter is called.

	
power

	Pimped Python property for interfacing with instruments. Can be used as
a decorator.

Processors can registered for each arguments to modify their values before
they are passed to the body of the method. Two standard processors are
defined: values and units and others can be given as callables in the
get_funcs parameter.

If a method contains multiple arguments, use the item method.

Feat has the following nested behaviors:

	Feat: lantz specific modifiers: values, units, limits, procs, read_once)

	LockProperty: locks the parent drive (for multi-threading apps)

	ObservableProperty: emits a signal when the cached value has changed (via set/get)

	SetCacheProperty: prevents unnecessary set operations by comparing the value in the cache

	TransformProperty: transform values according to predefined rules.

	LogProperty: log get and set operations

	StatsProperty: record number of calls and timing stats for get/set/failed operations.

	Finally the actual getter or setter is called.

	
power_sp

	Pimped Python property for interfacing with instruments. Can be used as
a decorator.

Processors can registered for each arguments to modify their values before
they are passed to the body of the method. Two standard processors are
defined: values and units and others can be given as callables in the
get_funcs parameter.

If a method contains multiple arguments, use the item method.

Feat has the following nested behaviors:

	Feat: lantz specific modifiers: values, units, limits, procs, read_once)

	LockProperty: locks the parent drive (for multi-threading apps)

	ObservableProperty: emits a signal when the cached value has changed (via set/get)

	SetCacheProperty: prevents unnecessary set operations by comparing the value in the cache

	TransformProperty: transform values according to predefined rules.

	LogProperty: log get and set operations

	StatsProperty: record number of calls and timing stats for get/set/failed operations.

	Finally the actual getter or setter is called.

	
restart = <lantz.core.action.Action object>

	

	
restart_async(*args, **kwargs)

	(Async) Forces the laser on without checking if autostart is enabled.

	
status

	Pimped Python property for interfacing with instruments. Can be used as
a decorator.

Processors can registered for each arguments to modify their values before
they are passed to the body of the method. Two standard processors are
defined: values and units and others can be given as callables in the
get_funcs parameter.

If a method contains multiple arguments, use the item method.

Feat has the following nested behaviors:

	Feat: lantz specific modifiers: values, units, limits, procs, read_once)

	LockProperty: locks the parent drive (for multi-threading apps)

	ObservableProperty: emits a signal when the cached value has changed (via set/get)

	SetCacheProperty: prevents unnecessary set operations by comparing the value in the cache

	TransformProperty: transform values according to predefined rules.

	LogProperty: log get and set operations

	StatsProperty: record number of calls and timing stats for get/set/failed operations.

	Finally the actual getter or setter is called.

Example controller

This is an example of a controller with a fake (invented) device. It should help to gide
developers to create new controllers for real devices.

	
class hyperion.controller.example_controller.ExampleController(settings)

	Example output device that does not connect to anything

	
amplitude

	Gets the amplitude value.

	Getter

	

	Returns

	amplitude value in Volts

	Return type

	float

	Setter

	

	Parameters

	value (float) – value for the amplitude to set in Volts

For example, to use the getter you can do the following
ampl = this_controller.amplitude
For example, using the setter looks like this:
this_controller.amplitude = 5

	
finalize()

	This method closes the connection to the device.
It is ran automatically if you use a with block

	
idn()

	Identify command

	Returns

	identification for the device

	Return type

	string

	
initialize()

	Starts the connection to the device in port

	
query(msg)

	writes into the device msg

	Parameters

	msg (string) – command to write into the device port

	
read()

	Fake read that returns always the value in the dictionary FAKE RESULTS.

	Returns

	fake result

	Return type

	string

	
write(msg)

	Writes into the device
:param msg: message to be written in the device port
:type msg: string

	
class hyperion.controller.example_controller.ExampleControllerDummy(settings)

	A dummy version of the Example Controller.

In essence we have the same methods and we re-write the query to answer something meaningful but
without connecting to the real device.

	
query(msg)

	writes into the device msg

	Parameters

	msg (string) – command to write into the device port

Generic Serial Controller

This is a generic controller for Serial devices (like Arduino).
It includes serial write and query methods.
Higher level stuff could (should?) be done at Instrument level.
Extra methods could however also be added to this controller,
as long as they don’t break the existing functionality.

This controller is however intended to be agnostic of what code/firmware/sketch
is running on the device. I suggest to keep it that way and put device
specific functionality in a dedicated instrument.
This also means Dummy mode needs to be implemented mostly at Instrument level.

Development note:
I’ve added the experimental decorator _wait_while_busy_and_after.
If it turns out not to work desirably it can be removed:
remove the application of the decorator on methods initialize, write and read_serial_buffer_in
remove the decorator function itself
remove self._busy and self._additional_timeout from the __init__

	
class hyperion.controller.generic.generic_serial_contr.GenericSerialController(settings)

	Generic Serial Controller

	Parameters

	settings (dict) – This includes all the settings needed to connect to the device in question.

	
finalize()

	This method closes the connection to the device.
It is ran automatically if you use a with block.

	
idn()

	Identify command.

	Returns

	identification for the device

	Return type

	string

	
query(message)

	Writes message in the device Serial buffer and Reads the response.
Note, it clears the input buffer before sending out the query.

	Parameters

	message (str) – command to send to the device

	Returns

	list of responses received from the device

	Return type

	list of strings

	
read_lines(remove_leading_trailing_empty_line=True)

	
Reads all lines the device has sent and returns list of strings.
It interprets both

and combinations as a newline character.

	param remove_leading_trailing_empty_line

	defaults to True

	type remove_leading_trailing_empty_line

	bool

	return

	list of lines received from the device

	rtype

	list of strings

	
class hyperion.controller.generic.generic_serial_contr.GenericSerialControllerDummy(settings)

	A dummy version of the Generic Serial Controller.

Note that because Generic Serial Controller is supposed to be device agnostic
this dummy can’t simulate every device. For devices using this Controller,
simulation has to be done at Instrument level.
This Dummy only stores write messages in a buffer and returns this buffer with
the read_serial_buffer_in method.

All other methods are are kept from GenericSerialController.

	
finalize()

	Finalizes Generic Serial Controller Dummy device.

	
initialize()

	Initializes Generic Serial Controller Dummy device.

	
query(message)

	Simulates query to dummy device.
Clears the internal buffer. Performs a write, followed by a read_lines().
Note, it clears the input buffer before sending out the query.

	Parameters

	message (str) – command to send to the device

	Returns

	response from the device

	Return type

	str

	
read_serial_buffer_in(wait_for_termination_char=True)

	Simulates read from dummy device (returns internal buffer).

	
write(message)

	Simulates write to dummy device (adds message to an internal buffer).
:param message: message to write
:type message: string

Hydraharp400 controller

This code is strongly based on the code from Colin Brosseau, licensed as BSD 3-Clause “New” or “Revised” License:

Copyright (c) 2017, Colin Brosseau
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The original code was taken on Fri Nov 10 15:36:48 2017 from Github (https://github.com/ColinBrosseau/Hydraharp400),
changed by Irina Komen to work within hyperion.

	
class hyperion.controller.picoquant.hydraharp.Hydraharp(config)

	
Hydraharp 400 controller

Initializes communication with Hydraharp400 device.

	Parameters

	
	devidx (int) – index of the device

	mode (string) – operation mode, can be: ‘Histogram’(default), ‘T2’,’T3’,’Continuous’

	clock (string) – source of the clock, can be: ‘External’(default), ‘Internal’

	
calibrate()

	Calibrate the device; no calibration file needed, this is an internal function.

	Parameters

	devidx (int) – Index of the device (default 0)

	
clear_histogram()

	Clear histogram from memory

	
count_rate(channel=0)

	
Current count rate of the input channel.

Allow at least 100 ms after HH_Initialize or HH_SetSyncDivider to get a stable rate meter readings.

Similarly, wait at least 100 ms to get a new reading. This is the gate time of the counters.

	Parameters

	channel (int) – input channel index; in our case 0 or 1

return count rate: measured counts per second on one of the channels

	
ctc_status

	Acquisition time state.

	Return status

	False: acquisition time still running; True: acquisition time has ended

	
error_string

	Error messages.

	
finalize()

	Closes and releases the device for use by other programs.

	
flags

	Use the predefined bit mask values in hhdefin.h (e.g. FLAG_OVERFLOW) to extract individual bits through a bitwise AND.

	
hardware_info

	Information about the device.

	
histogram(channel=0, clear=True)

	
Histogram of channel.

Have to use this one only after starting a measurement!

The histogram is always taken between one of the input channels and the sync channel.

To perform start-stop measurements, connect one of the photon detectors to the sync channel.

	Parameters

	
	channel (int) – input channel index; in our case 0 or 1

	clear (bool) – denotes the action upon completing the reading process; False keeps the histogram in the acquisition buffer; True clears the buffer

	Return histogram

	array with the histogram data; size is determined by histogram_length, default 2^16

	
histogram_offset(offset=0)

	
Histogram time offset in ps.

(Documentation say ns, but it’s most probably a typo.)

	Parameters

	offset (int) – Histogram time offset in ps; 0, … 500000

	
initialize(mode='Histogram', clock='Internal')

	Initialize the device.

	Parameters

	
	devidx (int) – index of the device

	mode (string) – operation mode, can be: ‘Histogram’(default), ‘T2’,’T3’,’Continuous’

	clock (string) – source of the clock, can be: ‘External’(default), ‘Internal’

	
input_CFD(channel=0, level=50, zerox=0)

	
UNUSED

Parameters of the input CFD (constant fraction divicriminator).

Values are given as a positive number although the electrical signals are actually negative.

	Parameters

	
	channel (int) – input channel index; in our case 0 or 1

	level (int) – CFD discriminator level in millivolts

	zerox (int) – CFD zero cross level in millivolts

	
input_offset(channel=0, offset=0)

	Input offset in time

	Parameters

	
	channel (int) – input channel index; in our case 0 or 1

	offset (int) – time offset in ps -99999, …, 99999

	
library_version

	Version of the library.

	
load_config(filename=None)

	
Loads the yml configuration file of default instrument settings that probably nobody is going to change.

File are in folder /controller/picoquant/Hydraharp_controller.yml.

	Parameters

	filename (string) – the name of the configuration file

	
number_input_channels

	Number of installed input channels, in our case should be two (plus sync).

	
resolution

	Resolution (in ps) at the current binning.

	Return resolution

	resolution in ps at current binning

	
start_measurement(acquisition_time=1000)

	
Start acquisition.

Pay attention: acquisition_time is in ms!

	Parameters

	acquisition_time (int) – Acquisition time in ms; 0.001, … 360000

	
stop_measurement()

	
Stop acquisition.

Can be used before the acquisition time expires.

	
stop_overflow(stop_at_overflow=0, stop_count=0)

	
Determines if a measurement run will stop if any channel reaches the maximum set by stopcount.

In case of False, measurement will continue but counts above stop_count in any bin will be clipped.

	Parameters

	
	stop_at_overflow (bool) – True is stop at overflow, False is do not stop (default True)

	stop_count (int) – Maximum counts at which the program stops because of overflow; 1, … 4294967295 (default 4294967295)

	
sync_CFD(level=50, zerox=0)

	
UNUSED

Parameters of the sync CFD (constant fraction divicriminator).

Values are given as a positive number although the electrical signals are actually negative.

	Parameters

	
	level (int) – CFD discriminator level in millivolts

	zerox (int) – CFD zero cross level in millivolts

	
sync_divider(divider=1)

	
Divider of the sync:

Must be used to keep the effective sync rate at values ≤ 12.5 MHz.

It should only be used with sync sources of stable period. Using a larger divider than strictly necessary does not do great harm but it may result in slightly larger timing

jitter. The readings obtained with HH_GetCountRate are internally corrected for the divider setting and deliver the external
(undivided) rate. The sync divider should not be changed while a measurement is running.

	Parameters

	
	devidx (int) – Index of the device (default 0)

	divider (int) – 1, 2, 4, 8 or 16

	
sync_offset(value=0)

	Sync offset in time

	Parameters

	offset (int) – time offset in ps -99999, …, 99999

	
sync_rate()

	Current sync rate

	Return sync rate

	measured counts per second on the sync input channel

	
warnings

	
Warnings, bitwise encoded (see phdefin.h).

You must call HH_GetCoutRate and HH_GetCoutRate for all channels prior to this call.

	Return warming

	warning message

	
warnings_text

	Human readable warnings

	Return warning

	warning in readable text

	
class hyperion.controller.picoquant.hydraharp.Measurement_mode

	An enumeration.

	
class hyperion.controller.picoquant.hydraharp.Reference_clock

	An enumeration.

	
hyperion.controller.picoquant.hydraharp.c_int_p

	alias of hyperion.controller.picoquant.hydraharp.LP_c_int

LCC25 (thorlabs) driver

This controller supplies one class with several functions to communicate with the thorlabs
LCC25 liquid crystal controller.

Note that this controller also implements units.

	copyright

	2020by Hyperion Authors, see AUTHORS for more details.

	license

	BSD, see LICENSE for more details.

	
class hyperion.controller.thorlabs.lcc25.Lcc(settings)

	This class is to controls the LCC25 thorlabs driver for a liquid crystal variable waveplate.

	
finalize()

	Closes the connection to the device

	
freq

	Modulation frequency when the operation mode is ‘modulation’ (mode = 0)

: getter : Asks for the current frequency

	Returns

	The frequency value

	Return type

	pint quantity

: setter :

	Parameters

	F (pint Quantity) – frequency in Hz. It can be any value between 0.5 and 150Hz.

	
get_commands()

	Gives a list of all the commands available
:return: list with the commands available
:rtype: str

	
get_voltage(Ch=1)

	Gets the voltage value for VoltageCh where Ch = 1 or 2 for Voltage1 or Voltage2

	Parameters

	Ch (int) – The channel to use, can be 1 or 2

	Returns

	The method returns the voltage value present in the device in volts.

	Return type

	pint quantity

	
idn()

	Gets the identification for the device

	Returns

	answer

	Return type

	string

	
initialize()

	Initialize the device

	
mode

	
Operation mode

The possible modes are:

1 = ‘Voltage1’ : sends a 2kHz sin wave with RMS value set by voltage 1

2 = ‘Voltage2’ : sends a 2kHz sin wave with RMS value set by voltage 2

0 = ‘Modulation’: sends a 2kHz sin wave modulated with a square wave where voltage 1 is one limit and voltage 2 is the second.

The modulation frequency can be changed with the command ‘freq’ in the 0.5-150 Hz range.

: getter : Gets the current mode
: setter : Sets the mode

	Parameters

	mode (int) – type of operation.

	
output

	Tells if the output is enabled or not.

	Getter

	

	Returns

	output state

	Return type

	logical

	Setter

	

	Parameters

	state (logical) – value for the amplitude to set in Volts

	
query(message)

	Writes in the buffer and Reads the response.

	Parameters

	message (str) – command to send to the device

	Returns

	response from the device

	Return type

	str

	
read()

	Reads message from the device

	Returns

	answer from the device (one line)

	Type

	str

	
read_serial_buffer_in()

	

Reads everything the device has sent. By default it waits until a line
is terminated by a termination character (

or

), but that check can

	be disabled using the input parameter.

	param untill_at_least_one_termination_char

	defaults to True

	type untill_at_least_one_termination_char

	bool

	return

	complete serial buffer from the device

	rtype

	bytes

	
set_voltage(Ch, V)

	Sets the voltage value for Ch where Ch = 1 or 2 for Voltage1 or Voltage2

	Parameters

	
	Ch (int) – channel to use (default =1)

	V (pint quantity) – voltage to set in Volts

	
write(message)

	Sends the message to the device.

	Parameters

	message (string) – the message to write into the device buffer

	
class hyperion.controller.thorlabs.lcc25.LccDummy(settings)

	This is the dummy controller for the LCC25. The idea is to load this class instead of the real one
to do testing of higher level functions without the need of the real device to be connected or working.

The logic is that this dummy device will respond as the real device would, with the correct type
and size of information is expected.

This class inherits from the real device and the idea is to re-write only the init, the write
and the read, so all the other functions remain the same and functioning.

The specific way to achieve this will be different for every device, so it has to be done separately.

To do so, we use a yaml file that tells the dummy class what are the properties of the device. For example,
one property for the LCC25 is voltage1, which is the voltage for channel 1. Then from this you can build 2
commands: voltage1? to ask what is the value and voltage1=1 to set it to the value 1. So we build a command
list using the CHAR ? and = for each of this properties.

	Parameters

	
	port (str) – fake port name

	dummy (logical) – indicates the dummy mode. keept for compatibility

	
load_properties()

	This method loads a yaml file with a dictionary with the available properties for the
LCC25 and some defaults values. This dictionary is saved in properties and will be modified
when a variable is writen, so the dummy device will respond with the previously set value.

	
query(message)

	Writes in the buffer and Reads the response.

	Parameters

	message (str) – command to send to the device

	Returns

	response from the device

	Return type

	str

	
read()

	Dummy read. Reads the response buffer

	
write(msg)

	Dummy write. It will compare the msg with the COMMANDS

	Parameters

	msg (str) – Message to write

Osa controller

This is the controller for the optical spectrum analyzer (OSA), from Ando, model AQ6317B.

	copyright

	2020 by Hyperion Authors, see AUTHORS for more details.

	license

	BSD, see LICENSE for more details.

	
class hyperion.controller.osa.osa_controller.OsaController(settings)

	Class for OSA controller.

	Parameters

	settings (dict) – this includes all the settings needed to connect to the device in question.

	
end_wav

	”
The end_wav is the end wavelength of the osa.
:param end_wav: a value between 600 and 1750, must be greater than start_wav
:type int

	
finalize()

	This method closes the connection to the osa machine.
This method should be called when all the things are done which you wanted to do with
osa machine.

	
get_data()

	Calculates the data created with the single sweep.
Wait for OSA to finish before grabbing data

	Return wav

	an list of the wavelengths, spec an list with spectrum data.

	Rtype wav

	a list of floats and a list of floats

	
initialize()

	Starts the connection to the device with given port

	
optical_resolution

	”
The optical resolution is the resolution of the spectrum you can take
:param optical_resolution: a value that must be : 0.01, 0.02 ,0.05 ,0.1 ,0.2 ,0.5 ,1.0 ,2.0 , 5.0
:type float

	
perform_single_sweep()

	Gives a command to the osa machine to perform a single sweep.

	
query(msg)

	writes into the device message

	Parameters

	msg (string) – command to write into the device port

	Return ans

	answer from the osa

	Rtype ans

	string

	
sample_points

	”
The amount of sample_points the osa machine must use in order to take a spectrum
:param sample_points: the amount of points that will be on the x axis
:type int

	
sensitivity

	”
The sensitivity of the osa machine
:param sensitivity_string: a string that says how much the sensitivity must be
:type string

	
set_settings_for_osa()

	in this method the parameters for the osa machine are set with
hand in order to quickly get results.

	
start_wav

	”
The start_wav is the start wavelength of the osa.
:param start_wav: a value between 600 and 1750
:type int

	
wait_for_osa(timeout=None)

	Method to let the program do nothing for a while
in order to create enough time to let the osa machine take a spectrum.

	Parameters

	timeout – time in seconds how long the program must wait before it resumes

if no timeout is specified a timeout will be calculated using self._time_constants
:type timeout: float

	
class hyperion.controller.osa.osa_controller.OsaControllerDummy(settings)

	In essence we have the same methods and we re-write the query to answer something meaningful but
without connecting to the real device.

	
idn()

	Identify command

	Returns

	identification for the device

	Return type

	string

	
initialize()

	Dummy initialize

	
query(msg)

	writes into the dummy device msg

	Parameters

	msg (string) – command to write into the device port

	
read()

	Fake read that returns always the value in the dictionary FAKE RESULTS.

	Returns

	fake result

	Return type

	string

	
write(msg)

	Writes into the dummy device

	Parameters

	msg (string) – message to be written in the device port

SK polarization driver

This class uses the 64bit dll from SK to use the SK polarization. For more details refer to the manual
of the device.

For now it only supports one polarization analyzer connected.

	copyright

	by Hyperion Authors, see AUTHORS for more details.

	license

	BSD, see LICENSE for more details.

	
class hyperion.controller.sk.sk_pol_ana.Skpolarimeter(settings)

	This is the controller for the SK polarization. Based on their dll.

	Parameters

	settings (dict) – dictionary with the entry ‘dll_name’ : ‘SKPolarimeter’ (default value)

	
finalize()

	Closing communication with device

	
get_device_information()

	Get SK polarization analyzer information. This function adds the obtained values
to the properties of the class so they are accessible for all the functions

	Returns

	reading answer from the function

	Return type

	int

	
get_number_polarizers()

	Get the number of polarizers available in the system

	
get_wavelength()

	Get current wavelength

	Returns

	wavelength in nm

	Return type

	float

	
initialize(wavelength=630)

	Initiate communication with the SK polarization analyzer

	Parameters

	wavelength (int) – the working wavelength in nm

	
start_measurement()

	start measurement

	
stop_measurement()

	start measurement

	
wait_to_measure()

	This function is meant to be used to delay the first measurement so the device
is ready and producing data.
It is used as a decorator.

	
class hyperion.controller.sk.sk_pol_ana.SkpolarimeterDummy(settings)

	This is the dummy controller for the SK polarization. Based on their dll.

Stanford SR830

This controller (lock-in.py) supplies one class with several methods to communicate with the lock-in from “SRS” model SR830.

Based on the OSA Controller since it also uses GPIB connection.

	copyright

	2020by Hyperion Authors, see AUTHORS for more details.

	license

	BSD, see LICENSE for more details.

	
class hyperion.controller.stanford.sr830.sr830(settings)

	The controller for the lock-in.

	Parameters

	settings (dict) – this includes all the settings needed to connect to the device in question.

	
end_wav

	”
The end_wav is the end wavelength of the osa.
:param end_wav: a value between 600 and 1750, must be greater than start_wav
:type int

	
finalize()

	This method closes the connection to the osa machine.
This method should be called when all the things are done which you wanted to do with
osa machine.

	
get_data()

	Calculates the data created with the single sweep.
Wait for OSA to finish before grabbing data

	Return wav

	an list of the wavelengths, spec an list with spectrum data.

	Rtype wav

	a list of floats and a list of floats

	
initialize()

	Starts the connection to the device with given port

	
optical_resolution

	”
The optical resolution is the resolution of the spectrum you can take
:param optical_resolution: a value that must be : 0.01, 0.02 ,0.05 ,0.1 ,0.2 ,0.5 ,1.0 ,2.0 , 5.0
:type float

	
perform_single_sweep()

	Gives a command to the osa machine to perform a single sweep.

	
query(msg)

	writes into the device message

	Parameters

	msg (string) – command to write into the device port

	Return ans

	answer from the osa

	Rtype ans

	string

	
sample_points

	”
The amount of sample_points the osa machine must use in order to take a spectrum
:param sample_points: the amount of points that will be on the x axis
:type int

	
sensitivity

	”
The sensitivity of the osa machine
:param sensitivity_string: a string that says how much the sensitivity must be
:type string

	
set_settings_for_osa()

	in this method the parameters for the osa machine are set with
hand in order to quickly get results.

	
start_wav

	”
The start_wav is the start wavelength of the osa.
:param start_wav: a value between 600 and 1750
:type int

	
wait_for_osa(timeout=None)

	Method to let the program do nothing for a while
in order to create enough time to let the osa machine take a spectrum.

	Parameters

	timeout – time in seconds how long the program must wait before it resumes

if no timeout is specified a timeout will be calculated using self._time_constants
:type timeout: float

Thorlabs motor controller

Note: this is a wrapper class around an external controller to fit it into hyperion structure

Is based on the imported Thorlabs APT python software from https://github.com/qpit/thorlabs_apt/tree/master/thorlabs_apt.
This is installed in hyperion and can be found in C:/Users/NAME/AppData/Local/Continuum/anaconda3/envs/hyperion/Lib/site-packages/thorlabs_apt.
This controller basically is just a wrapper to make things work within hyperion.
The core is not always well documented, for better descriptions see the thorlabs_motor_instrument.

	
class hyperion.controller.thorlabs.tdc001_cube.TDC001_cube(settings)

	
This is the controller for the Thorlabs TDC001_cubes that work with motors.

It is just a wrapper that is linking to the thorlabs_apt.core with the class Motor in it.

Usually, the super().__init__() would execute the init of the BaseController.

However, since the current class inherits from both core.Motor and BaseController, only the first init is executed.

	Parameters

	settings (dict) – the class Motor needs a serial number

	
finalize()

	
Here is should close the connection with the device, but this or similar functions do not exist in the core.Motor.

So this function is just so that higher layers dont give errors.

	
initialize()

	
The external core.Motor object is already initialized by executing super().__init__(self.serial).

So this function is just so that higher layers dont give errors.

	
class hyperion.controller.thorlabs.tdc001_cube.TDC001_cubeDummy(settings)

	A dummy version that does not do anything at all.

RS 1316 driver

Very outdated code that does NOT follow hyperion structure and will not work.

	copyright

	
	

	license

	, see LICENSE for more details.

	
class hyperion.controller.rs.thermometer.Rs1316(settings)

	controller class for the driver aa_mod18012 from AA optoelelectronics.
This class has all the methods to communicate using serial.

	NOTE: Our model has different ranges of frequency (see data sheet)

	Line 1 to 6: 82-151 MHz (this drives short wavelengths)
Line 7 to 8: 68-82 MHz (this drives long wavelengths)

	
finalize()

	This method closes the connection to the device.
It is ran automatically if you use a with block

	
initialize()

	Starts the connection to the device.

Experiment

In the Experiment folder we have a special set of classes the
Experiments. This are classes talking to many instruments
simultaneously and actually doing what is needed to
measure some physical parameter of interest.

The basic example is to perform a scan: one physical parameter
is sweep and for each of these values some other quantity is
measured.

Every time we have to run an automatic experiment we write the
class that contains all the methods needed to set it up, run and save
the obtained data.

Of course, more complex experiments where many things are changed (or
fixed) can be done.

Instruments

Here we group information about the second layer in our onion principle,
the Instrument. We usually add functionalities that are specific
to the setup or the experiment, not te devices itself, such as
calibrations or specialized methods that are unlikely to be reused
in another setup.

Current Models:

	Base (Meta) Instrument

	Example Instrument

	AOTF instrument

	Instrument for the function generator

	SK Polarimeter

	LCC25 (thorlabs) model

	Hydraharp Instrument

	Osa Instrument

	ANC350 Attocube Instrument

	Thorlabs thorlabs_motor Instrument

	Winspec Instrument

	Beam Flags Instrument

Base (Meta) Instrument

This file contains two base classes to be used as parent classes for Instrument classes and MetaInstrument classes.

	
class hyperion.instrument.base_instrument.BaseInstrument(settings)

	Let Instrument classes inherit from this class.
An instrument is a layer between the Controller (which takes care of hardware communication) and the user or
Experiment. This instrument layer allows to add functionality, pint-units and may be used as an abstraction layer for
similar controllers.

	
finalize()

	This is to close connection to the device.

If you need to parse arguments to the finalize, make your own finalize method in
your instrument class.

	
idn()

	Identify command

	
initialize()

	Starts the connection to the device.

If you need to parse arguments to the initialize, make your own initialize method in
your instrument class.

	
load_controller(settings)

	Loads controller

	Parameters

	settings (dict) – dictionary with the field controller

	Returns

	controller class

	Return type

	class

	
class hyperion.instrument.base_instrument.BaseMetaInstrument(settings, sub_instruments)

	Let MetaInstrument classes inherit from this class.
A MetaInstrument takes other instruments as inputs (and does not use a controller)

The finalize() method of a MetaInstrument will call the finalize() methods of the sub instruments.
In the case of an Experiment class, the MetaInstruments don’t need to be finalized because the Instruments itself
will be finalized.

Example Instrument

This is an example instrument, created to give developers a canvas to start their own instruments
for real devices. This is only a dummy device.

	
class hyperion.instrument.example_instrument.ExampleInstrument(settings)

	Example instrument. it is a fake instrument

	
amplitude

	Gets the amplitude value
:return: voltage amplitude value
:rtype: pint quantity

	
finalize()

	This is to close connection to the device.
Note that the B

	
idn()

	Identify command

	Returns

	identification for the device

	Return type

	string

	
initialize()

	Starts the connection to the device”

AOTF instrument

This class (aa_aotf.py) is the model to connect to the AOTF using the controller aa_mod18012.py

The model is similar to the controller, but it adds specific functionalities such as units with Pint
and some calibrations.

	Wavelength calibration: you can directly set the desired wavelength. For this it uses
a look-up table and interpolation.

With this the class knows what voltages should be set when changing the wavelength.

	copyright

	by Hyperion Authors, see AUTHORS for more details.

	license

	BSD, see LICENSE for more details.

	
class hyperion.instrument.polarization.aa_aotf.AaAotf(settings)

	This class is the instrument class for the AOTF driver.

It implements another layer in the MVC design, adding calibration and units functionality.

	
blanking(state, mode='internal')

	Define the blanking state. If True (False), all channels are on (off).
It can be set to ‘internal’ or ‘external’, where external means that the modulation voltage
of the channel will be used to define the channel output.

	Parameters

	
	state (logical) – State of the blanking

	mode (string) – external or internal. external is used to follow TTL external modulation

	
choose_channel(freq)

	This function selects an appropriated channel for a given frequency in the range
supported by the device.

It returns channel 1 or 7 depending on the desired frequency.

	Channel 1 range: 82-151 MHz.

	Channel 7 range: 68-82 MHz.

	Parameters

	freq (pint Quantity) – Frequency

	Returns

	Channel number needed for the Frequency requested

	Return type

	int

	
finalize()

	To close the connection to the device

	
get_status()

	Gets the status of all channels in the controller

	
load_calibration(cal_file)

	This method loads the calibration file cal_file

	Parameters

	cal_file (string) – calibration file complete path, including extension (txt expected)

	
set_all_values(channel, freq, power, state=True, mode='internal')

	Sets the values for freq, power, state and mode for channel.
It can be used to turn in to or off, with state.

	Parameters

	
	channel (int) – channel to use (can be from 1 to 8 inclusive)

	freq (float) – Frequency. Channels 1-6 supports(82,151)MHz and Channels 7 and 8, (68,82)MHz

	power (float) – Power to set in dBm (0 to 22)

	state (logical) – True for on and False for off

	mode (string) – ‘internal’ or ‘external’

	Returns

	Response from the driver

	Return type

	string

	
set_defaults(channel)

	Sets channel to default values given in the dictionary
at the beginning of the class.

	Parameters

	channel (int) – channel value to put to default settings.

	
set_frequency_all_range(freq, power, state=True, mode='internal')

	Automatically chooses channel 1 or 7 depending on the frequency requested and sets it.

	Parameters

	
	freq (pint Quantity) – Frequency. Supported range (68,151) MHz

	power (float) – Power to set in dBm (0 to 22)

	state (logical) – True for on and False for off

	mode (string) – ‘internal’ or ‘external’

	
set_wavelength(wl, power, state=True, mode='internal')

	This sets the wavelength wl by using the calibration file.

	Parameters

	
	wl (pint Quantity) – This is the wavelength to set (it has to be in the range supported by the calibration file)

	power (float) – Power for the RF in the AOTF, in dBm. range = (0,22) dBm

	state (logical) – to turn the output on or off

	mode (string) – ‘internal’ or ‘external’

	Returns

	output from the driver.

	Return type

	string

	
wavelength_to_frequency(wl, method='interp')

	uses the calibration file to calculate the frequency needed to get the
wavelength wl.

	Parameters

	
	wl (pint Quantity) – Wavelength (distance)

	method (string) – interpolation method (‘interp’ by default)

	Returns

	Frequency value

	Return type

	pint Quantity

Instrument for the function generator

This class (fun_gen.py) is the model to control the function generator agilent33522A
It ads the use of units with pint.

	copyright

	by Hyperion Authors, see AUTHORS for more details.

	license

	BSD, see LICENSE for more details.

	
class hyperion.instrument.function_generator.fun_gen.FunGen(settings)

	This class is to control the function generator.

	Parameters

	settings (dict) – to parse the settings needed. Some keys are needed: ‘controller’ and ‘instrument_id’

	
enable_output(ch, state)

	Enables the output to the device

	Parameters

	
	ch (int) – channel to use

	state (logical) – type to set the output on and off (True and False, respectively)

	
enable_voltage_limits(channel, state)

	This function enables the limits for the maximum and minimum voltage
output that can be generated by each channel. Those values are set with
the method set_voltage_limits(channel, high, low).

This function enables this setting by putting state = true and disables
it by putting state = false. When enable, setting a voltage outside the permitted
values will give an error (not in python)

	Parameters

	
	channel (int) – number of channel. it can be 1 or 2 for this model

	state (logical) – True to turn on, False to turn of

	
finalize(state=True)

	Closes the connection to the device

	
get_frequency(channel)

	This functions gets the frequency output for the channel

	Parameters

	channel (int) – number of channel. it can be 1 or 2 for this model

	Returns

	frequency in the channel

	Return type

	pint quantity

	
get_system_error()

	This functions returns the error message

	Returns

	error message

	Return type

	string

	
get_voltage_high(channel)

	Gets the high voltage value of the channel.

	Parameters

	channel (int) – Channel number. Range depends on device

	Returns

	current high voltage for the channel

	Return type

	pint quantity

	
get_voltage_limits(channel)

	Gets the set values for the voltage limits, high and low.

	Parameters

	channel (int) – number of channel. it can be 1 or 2 for this model

	Returns

	array with [high_value, low_value]

	Return type

	pint quantity array

	
get_voltage_limits_state(channel)

	This function gets the state of the voltage limits for the
required channel

	Parameters

	channel (int) – number of channel. it can be 1 or 2 for this model

	Returns

	current state of the channel voltage limits

	Return type

	logical

	
get_voltage_low(channel)

	Gets the low voltage value of the channel.

	Parameters

	channel (int) – Channel number. Range depends on device

	Returns

	current low voltage for the channel

	Return type

	pint quantity

	
get_voltage_offset(channel)

	Gets the peak-to-peak voltage of the channel.

	Parameters

	channel (int) – Channel number. Range depends on device

	Returns

	current offset for the channel

	Return type

	pint quantity

	
get_voltage_vpp(channel)

	Gets the peak-to-peak voltage of the channel.

	Parameters

	channel (int) – Channel number. Range depends on device

	Returns

	current peak to peak voltage

	Return type

	pint quantity

	
get_waveform(channel)

	Sets the waveform to be generated. The functions available are
FUNCTIONS = [‘SIN’,’SQU’,’TRI’,’RAMP’,’PULS’,’PRBS’,’NOIS’,’ARB’,’DC’]

	Parameters

	channel (int) – Channel number

	Returns

	One of the FUNCTIONS

	
idn()

	Ask for the identification

	Returns

	message with identification from the device

	Return type

	string

	
load_defaults(apply, filename=None)

	
	This loads the default configuration and applies it, depending on the

	apply parameter. The information is kept in the variable self.DEFAULTS

	Parameters

	
	apply (logical) – decides weather to apply this settings or not

	filename – location for the config_agilent33522A.yml to use. If not given uses

the default config file in the model/function_generator folder

	
output_state()

	Gets the current state of the output

	Returns

	A list of with the state of all channels.

	Return type

	list of logical

	
set_frequency(channel, freq)

	This functions sets the frequency output for the channel

	Parameters

	
	channel (int) – number of channel. it can be 1 or 2 for this model

	freq (pint quantity) – Frequency to set

	
set_voltage_high(channel, value)

	Sets the high voltage value for the channel.

	Parameters

	
	channel (int) – Channel number. (list in self.CHANNELS)

	value (pint quantity) – The input value in Volts

	Returns

	current high voltage for the channel

	Return type

	pint quantity

	
set_voltage_limits(channel, high, low)

	This function generator can set a minimum and maximum voltage value that will not be exceeded
to protect the device that is being feed.
This function sets the values high and low as voltage limits. If this option is activated then the
output will not exceed the given values.
NOTE: setting the values does not activate this feature. To enable/disable it use the function

	Parameters

	
	channel (int) – number of channel. it can be 1 or 2 for this model

	high (pint quantity) – upper voltage limit

	low (pint quantity) – lower voltage limit

	
set_voltage_low(channel, value)

	Sets the low voltage value for the channel.

	Parameters

	
	channel (int) – Channel number. (list in self.CHANNELS)

	value (pint quantity) – voltage low to set to channel

	Returns

	voltage set

	Return type

	pint quantity

	
set_voltage_offset(channel, value)

	Sets the DC offset voltage of the channel.

	Parameters

	
	channel (int) – Channel number. Range depends on device

	value – The input value in Volts

:type pint quantity
:return: current offset for the channel
:rtype: pint quantity

	
set_voltage_vpp(channel, value)

	Sets the peak-to-peak voltage of the channel.

	Parameters

	
	channel (int) – Port number. Range depends on device

	value (pint quantity) – peak to peak voltage to set

	Returns

	current peak to peak voltage

	Return type

	pint quantity

	
set_waveform(channel, fun)

	Sets the waveform to be generated. The functions available are
FUNCTIONS = [‘SIN’,’SQU’,’TRI’,’RAMP’,’PULS’,’PRBS’,’NOIS’,’ARB’,’DC’]

	Parameters

	
	channel (int) – channel to use

	fun (string) – function to generate

SK Polarimeter

This class (polarization.py) is the model to connect to the SK Polarization analyzer from SK.

The model is similar to the controller, but it adds specific functionalities such as units with Pint
and error descriptions

	copyright

	by Hyperion Authors, see AUTHORS for more details.

	license

	BSD, see LICENSE for more details.

	
class hyperion.instrument.polarization.polarimeter.Polarimeter(settings)

	This class is the model for the SK polarization.

	
change_wavelength(w)

	Change the current wavelegnth to w

	Parameters

	w (pint quantity (distance)) – wavelength

	Returns

	current wavelength

	Return type

	pint quantity (distance)

	
create_header(errors=False, extra_name=None, extra_unit=None, extra_description=None)

	creates the header to save the data

	Parameters

	
	extra_name (str) – if a first column has to be added, this is the name

	extra_unit (str) – if a first column has to be added, this is the unit

	extra_description (str) – if a first column has to be added, this is the description

	Returns

	header with the information of the data saved

	Return type

	string

	
finalize()

	Finishes the connection to the SK polarization

	
get_average_data(N)

	Takes N data points and gives back the average and the error (std)

	Returns

	av, array with dim 13 containing the average of the N measurements for each property in DATA_TYPES, and the std

	Return type

	numpy array

	Returns

	st, array with dim 13 containing the std of the N measurements for each property in DATA_TYPES, and the std

	Return type

	numpy array

	Example:

	>>> av, st = get_average_data(10)
>>> print('Values: {} +/- {}'.format(av, st))
Values

	
get_data()

	This methods gets the a single measurement point from the device.
It reads all the types of data available, listed in DATA_TYPES.

	Returns

	a list with the data

	Return type

	list

	
get_information()

	gets the information from the device: number of polarizers and id.

	
get_multiple_data(N)

	This is to get a stream of data directly from the device.

	Parameters

	N (int) – number of data points needed

	Returns

	a np array

	
get_wavelength()

	asks the device the current wavelength.

	Returns

	current wavelength

	Return type

	pint quantity

	
initialize(wavelength=None)

	This is to initialize the model by calling the initizialize function in the controller.
It adds units for the wavelength

	Parameters

	wavelength (pint quantity) – the working wavelength

	
save_as_netCDF4(filename, data)

	Saves the data from the polarimeter measurement into a netCDF4 file.

	
save_data(data, extra=[None, None, None, None], file_path='polarimeter_test.txt')

	saves the data. It assumes that the data comes from the SK so it is a matrix of 13 rows and
an arbitrary number of columns.

	Parameters

	
	data (numpy array) – array of (N,13)

	extra – list containing the extra vector to save (1xN), the name of the extra data and

the unit. For example: [np.array([1,2,3]),’time’,’second’,’elapsed time’].
:type extra: list

	
start_measurement()

	This method starts the measurement for the polarization analyzer.

	
stop_measurement()

	This method stops the measurement for the polarization analyzer.

LCC25 (thorlabs) model

This class (variable_waveplate_gui.py) is the model to drive the LCC25 variable waveplate controller.

It ads the use of units with pint and the wavelength calibration to obtain make the variable
waveplate a quarter waveplate for a given wavelength.

	copyright

	by Hyperion Authors, see AUTHORS for more details.

	license

	BSD, see LICENSE for more details.

	
class hyperion.instrument.polarization.variable_waveplate.VariableWaveplate(settings)

	This class is the model for the LCC25 analog voltage generator for the variable waveplate from thorlabs.

	
do_interp(w, x, y)

	This function interpolates the voltage value for the wavelength value w,
using the calibration data (x,y) where x is wavelength and y is voltage

	Parameters

	
	w (pint quantity) – desired wavelength

	x (pint quantity) – wavelength vector from calibration

	y (pint quantity) – calibrated voltage values

	Returns

	the voltage for the desired wavelength

	Return type

	pint quantity

	
finalize(state=False)

	Closes the connection to the device

	
freq

	Modulation frequency when the operation mode is ‘modulation’ (mode = 0)

: getter :

Asks for the current frequency

	Returns

	The frequency value

	Return type

	pint quantity

: setter :

	Parameters

	F (pint Quantity) – frequency in Hz. It can be any value between 0.5 and 150Hz.

	
get_analog_value(channel)

	Gets the analog voltage of the channel.

	Parameters

	channel (int) – Port number. Range depends on device

	Returns

	voltage: voltage in use for the channel

	Return type

	pint quantity

	
idn()

	Ask for the identification

	
initialize()

	initializes the connection with the controller

	
load_calibration(cal_file)

	This method loads the calibration file cal_file

	Parameters

	cal_file (string) – calibration file complete path, including extension (txt expected)

	
mode

	Operation mode

The possible modes are:

‘Modulation’: sends a 2kHz sin wave modulated with a square wave where voltage 1
is one limit and voltage 2 is the second. the modulation frequency can be
changed with the command ‘freq’ in the 0.5-150 Hz range.

‘Voltage1’ : sends a 2kHz sin wave with RMS value set by voltage 1

‘Voltage2’ : sends a 2kHz sin wave with RMS value set by voltage 2

‘QWP’ : uses the calibration file to set the voltage that acts as a quarter-wave plate
for the specified wavelength.

: getter :

Gets the current mode

	Returns

	current mode

	Return type

	string

: setter :

Sets the mode

	Parameters

	mode (string) – type of operation.

	
output

	Tells if the output is enabled or not.

	Getter

	

	Returns

	output state

	Return type

	logical

	Setter

	

	Parameters

	state (logical) – value for the amplitude to set in Volts

	
quarter_waveplate_voltage(wavelength, method='lookup')

	This method gives the voltage needed to set on the LCC25 to get a
quarter waveplate (QWP) behaviour for a given wavelength.
It is based on a calibration file that relates the QWP voltage to a wavelength
and (so far) uses a linear fit to those data points.

	Parameters

	
	wavelength (pint Quantity) – The input wavelength

	method (string) – method to extrapolate between measured data points

	Returns

	the QWP voltage

	Return type

	pint quantity

	
set_analog_value(channel, value)

	Sets the analog voltage of the channel.

	Parameters

	
	channel (int) – Port number. Range depends on device

	value (pint quantity) – The input value in Volts between 0 and 25 (Pint type)

	
set_quarter_waveplate_voltage(wavelength)

	This method sets the quarter-wave plate (QWP) voltage to the variable-wave plate
for a given wavelength. It uses Voltage 1 for output.

	Parameters

	wavelength (pint Quantity) – The input wavelength

	Returns

	the voltage set to the controller

	Return type

	pint quantity

Hydraharp Instrument

This is the instrument level of the correlator Hydraharp400 from Picoquant

	
class hyperion.instrument.correlator.hydraharp_instrument.HydraInstrument(settings)

	A class for the Hydraharp instrument.

	Parameters

	settings (dict) – to parse the needed settings.

	
configurate(filename=None)

	
Loads the yml configuration file of default instrument settings that probably nobody is going to change.

File in folder instrumentcorrelatorHydrahaInstrument_config.yml.

	Parameters

	filename (string) – the name of the configuration file

	
count_rate(channel)

	Asks the controller the rate of counts on the count channels and adds units.

	Parameters

	channel (int) – count rate channel 0 or 1 (1 or 2 on device) connected to the photon counter

	Returns

	count rate that is read out in counts per second

	Return type

	pint quantity

	
finalize()

	This method is to close connection to the device.

	
initialize()

	Starts the connection to the device, calibrates it and configures based on the yml file.

	
make_histogram(integration_time, count_channel)

	
Does the histogram measurement, checking for the status, saving the histogram.

You need to start the measurement and than you could collect the histogram.

This communicates with the controller method start_measurement and than goes to the wait_till_finished method.

	Parameters

	
	count_channel (int) – number of channel that is correlated with the sync channel, 1 or 2

	integration_time (pint quantity) – acquisition time of the histogram; (please don’t use the word time)

	Returns

	array containing the histogram

	Return type

	array

	
set_histogram(leng, res)

	
Clears the possible previous histogram, sets the histogram length and resolution.

Has also to do with the binning and the length of the histogram.

In the correlator software, the length is fixed to 2^16 and the resolution determines the binning and thus the time axis that is plot.

	Parameters

	
	leng (int) – length of histogram

	res (pint quantity) – resolution in the histogram in ps

	
stop_histogram()

	
This method stops taking the histogram, could be used in higher levels with a thread.

	
sync_rate()

	Asks the controller the rate of counts on the sync channel and adds units.

	Returns

	counts per second on the sync channel

	Return type

	pint quantity

	
wait_till_finished(integration_time, count_channel)

	
This method should ask the device its status and keep asking until it’s finished.

However, the remaining time is printed but not shown with the timer in the gui.

The loop breaks if self.stop is put to True, which could be done in a higher level with a thread.

	Parameters

	
	integration_time (pint quantity) – integration time of histogram (please don’t use the word time)

	count_channel (int) – number of channel that is correlated with the sync channel, 1 or 2

	Returns

	remaining time in seconds

	Return type

	pint quantity

Osa Instrument

This is the osa instrument, created to be able to indirectly talk to the device through controller and
get data which can be shown in the gui. So request for doing things go view > instrument > controller

This class uses pint to give units to the variables.

	
class hyperion.instrument.spectrum.osa_instrument.OsaInstrument(settings)

	OsaInstrument class

	
finalize()

	Closes the connection to the osa machine

	
idn()

	Identify command

	Returns

	identification for the device

	Return type

	string

	
initialize()

	Starts the connection to the osa machine

	
is_end_wav_bigger_than_start_wav(end_wav, start_wav)

	Check to see if end_wav is bigger than the start_wav

	Parameters

	
	end_wav – a pint quantity

	start_wav – a pint quantity

	Type

	pint nm quantity

	Type

	pint nm quantity

	Returns

	true if condition passed, false if condition failed.

:rtype boolean

	
is_end_wav_value_correct(end_wav)

	Is end_wav in range between 600 and 1750

	Parameters

	end_wav – a pint quantity

	Type

	pint nm quantity

	Returns

	true if condition passed, false if condition failed.

:rtype boolean

	
is_start_wav_value_correct(start_wav)

	Is start_wav in range between 600 and 1750 nm

	Parameters

	start_wav – the startwavelength

	Type

	pint nm quantity

	Returns

	true if condition passed, false if condition failed.

:rtype boolean

	
load_config(filename=None)

	Loads the configuration file to generate the properties of the Scan and Monitor.

	Parameters

	filename – Path to the filename. Default is: ‘Config/experiment.yml’ if not specified.

:type string

	
take_spectrum()

	Method where a spectrum will be taken using the osa machine.

	Returns

	wav, spec: two list containing the data from the taken spectrum.

	Rtype wav, sepec

	wav(a list of floats), spec(a list of floats)

ANC350 Attocube Instrument

This is the instrument level of the position ANC350 from Attocube (in the Montana)

	
class hyperion.instrument.position.anc_instrument.Anc350Instrument(settings)

	Anc 350 instrument class.

	
capacitance(axis)

	Measures the capacitance of the stepper or scanner; no idea why you would want to do that.

	Parameters

	axis (string) – scanner axis to be set, XPiezoScanner, YPiezoScanner, XPiezoStepper, etc.

	
check_if_moving(axis, position)

	
work in progress!

Checks whether the piezo is actually moving.

It checks if you are not out of range, or putting a too low voltage.

If that’s okay, it keeps checking whether you are actually moving.

However, the status of the piezo is not always correct, and the movement is not linear, so this method is not finished yet.

It also keeps checking whether self.stop is True, and asking the position. This can be used in higher levels with threads and timers.

	Parameters

	
	axis (pint quantity) – scanner axis to be set, XPiezoStepper, YPiezoStepper or ZPiezoStepper

	position – absolute position that you want to go to; needs to be an integer, no float!

	Returns

	The end position, so the moving method can compare that with the start position

	
configure_scanner(axis)

	
	Does the necessary configuration of the Scanner:

	you need to set the mode to INT, not DC-IN

	Parameters

	axis (string) – scanner axis to be set, XPiezoScanner, YPiezoScanner or ZPiezoScanner

	
configure_stepper(axis, amplitude, frequency, amplitudeControl)

	
	Does the necessary configuration of the Stepper:

	the Stepper seem to perform best when put in Amplitude Control mode, nr. 1; you can change that however

	loads the actor file, files are in controller folder, their names hardcoded in controller init

	sets the amplitude and frequency

	the amplitude influences the step width, the frequency influences the speed

	also stores the current position of the axis in self.current_positions

	Parameters

	
	axis (pint quantity) – stepper axis to be set, XPiezoStepper, YPiezoStepper or ZPiezoStepper

	amplitude – amplitude voltage; at room temperature you need 30V-40V, at low temperatures 40V-50V, max 60V; high amplitude is large stepwidth

	frequency – frequency to be set; higher means more noise but faster; between 1Hz and 2kHz

	
finalize()

	This is to close connection to the device.

	
get_position(axis)

	Asks the position from the controller level. This method is useful in higher levels where you want to display the position.

	Parameters

	axis (string) – stepper axis, XPiezoStepper, YPiezoStepper, or XPiezoScanner, etc.

	
given_step(axis, direction, amount)

	
Moves by a number of steps that theoretically should be determined by the set amplitude and frequency; in practice it’s different.

You have to give it a lot of time, things break if you ask too much whether it is finished yet.

	Parameters

	
	axis (string) – stepper axis to be set, XPiezoStepper, YPiezoStepper or ZPiezoStepper

	direction (integer) – direction to move: forward = 0, backward = 1

	amount (integer) – amount of steps that you want to take

	
initialize()

	
Starts the connection to the device by initializing the controller.

Loads the axis names from the yml file.

Runs set_temperature_limits.

	
move_continuous(axis, direction)

	Keeps moving the stepper axis until you manage to stop it (for which you need threading).

	Parameters

	
	axis (string) – stepper axis to be set, XPiezoStepper, YPiezoStepper or ZPiezoStepper

	direction (integer) – direction to move: forward = 0, backward = 1

	
move_relative(axis, step)

	
Moves the Stepper by an amount to be given by the user.

Pay attention: does not indicate if you take a position outside of the boundary, but you will keep hearing the noise of the piezo.

	Parameters

	
	axis (string) – stepper axis to be set, XPiezoStepper, YPiezoStepper or ZPiezoStepper

	step (pint quantity) – amount to move, can be both positive and negative; needs to be an integer, no float!

	
move_scanner(axis, voltage)

	
Moves the Scanner by applying a certain voltage.

Pay attention: the maximum voltage depends on the temperature in the cryostat.

There is no calibration, so you don’t know how far; but the range is specified for 50um with a voltage of 0-140V.

	Parameters

	
	axis (string) – scanner axis to be set, XPiezoScanner, YPiezoScanner or ZPiezoScanner

	voltage (pint quantity) – voltage to move the scanner; from 0-140V

	
move_to(axis, position)

	
Moves to an absolute position with the Stepper and tells when it arrived.

Pay attention: does not indicate if you take a position outside of the boundary, but you will keep hearing the noise of the piezo.

	Parameters

	
	axis (pint quantity) – stepper axis to be set, XPiezoStepper, YPiezoStepper or ZPiezoStepper

	position – absolute position that you want to go to; needs to be an integer, no float!

	
set_temperature_limits()

	The maximum voltage to put on the piezo scanners depends on the temperature in the cryostat. The user has to give that.
The maximum ranges from 60V at room temperature to 140V at 4K, and everything in between is linearly interpolated.

	
stop_moving(axis)

	Stops moving to target/relative/reference position.

	Parameters

	axis (string) – scanner or stepper axis to be set, XPiezoStepper, XPiezoScanner, YPiezoScanner etc

	
update_all_positions()

	Uses self.get_position to ask the position on all axes. This method is useful in higher levels where you want to display the position.

	
zero_scanners()

	Puts 0V on all three Piezo Scanners.

Thorlabs thorlabs_motor Instrument

Connects to the tdc001_cube controller, which is just a wrapper for the core underneath that we installed.
You can find the core here https://github.com/qpit/thorlabs_apt/tree/master/thorlabs_apt,
or need to copy it into C:/Users/NAME/AppData/Local/Continuum/anaconda3/envs/hyperion/Lib/site-packages/thorlabs_apt.

I implemented and documented those functions that I am actually going to use. If you want to use others, they might exist in the core.

	
class hyperion.instrument.position.thorlabs_motor_instr.Thorlabsmotor(settings)

	Thorlabsmotor instrument

	
check_move(value)

	
First checks whether there is no limit reached.

Then checks whether the units actually agree with the kind of device, so degrees for a waveplate or a length for a stage motor.

Returns whether you can move, otherwise prints warnings.

Returns the units of the value, since the controller thinks in degrees and mm.

	Parameters

	value (pint quantity) – distance or new position that you would want to move

	Returns

	you_can_move, value

	Return type

	Bool, float

	
finalize()

	This would have been to close connection to the device, but that method does not exist in the core controller.

	
get_axis_info()

	
Important returns axis information of stage.

If units = 1, the units are in mm and the device is a stage motor.

If units = 2, the units are in degrees and the device is a motorized waveplate.

Store this in self.kind_of_device, so the rest of this class knows.

	Returns

	(minimum position, maximum position, stage units, pitch)

	Return type

	tuple

	
initialize()

	
	Initializes the cube:

	checks whether the serial number is recognized by the cube

	runs list_device to check whether this serial number actually exists in all connected T-cubes

	asks the harware info just in case

	blinks the light to identify the T-cube

	runs set_axis_info, which will set the minimum position to -12 and

	run get_axis_info, which will figure out whether you are connected to a waveplate or stage motor always run this one!!

	
is_in_motion()

	Returns whether thorlabs motor is in motion, and prints a warning if so.

	Returns

	in motion

	Return type

	bool

	
list_devices()

	
Lists all available devices.

It actually maybe should live outside of this class, since it talks to all Thorlabs motors attached, not a single one.

However, I could not make that work, so now I kept it here.

It also runs through the list now and checks whether the serial of the T-cube that you want to talk to, exists in the list.

	
make_step(stepsize, blocking)

	
Moves the T-cube by one step of a stepsize.

Actually just uses move_relative, but I thought maybe this method might be useful for a gui.

If blocking is True, it will move until its done.

If blocking is False, it might not reach its destination if you dont give it time.

	Parameters

	
	stepsize (pint quantity) – stepsize in mm or degree

	blocking (bool) – wait until moving is finished; default False

	
motion_error()

	Returns whether there is a motion error (= excessing position error), and prints a warning if so.

	Returns

	motion error

	Return type

	bool

	
motor_current_limit_reached()

	Return whether current limit of thorlabs_motor has been reached, and prints a warning if so.

	Returns

	current limit reached

	Return type

	bool

	
move_absolute(new_position, blocking)

	
Moves the T-cube to a new position, but first checks the units by calling check_move.

The method check_move will give back the correct units.

If blocking is True, it will move until its done.

If blocking is False, it might not reach its destination if you dont give it time.

	Parameters

	
	new_position (pint quantity) – the new position

	blocking (bool) –

	
move_home(blocking)

	
Moves to home position.

You can use the blocking method of the core, but than higher layers will not be able to stop the move or know the position.

So I implemented my own blocking that uses the is_in_motion method.

If blocking is True, it will move until its done.

If blocking is False, it might not reach its destination if you dont give it time.

	Parameters

	blocking (bool) – wait until homed

	
move_relative(distance, blocking)

	
Moves the T-cube with a distance relative to the current one, but first checks the units by calling check_move.

The method check_move will give back the correct units.

If blocking is True, it will move until its done.

If blocking is False, it might not reach its destination if you dont give it time.

	Parameters

	
	value (pint quantity) – relative distance in mm or degree

	blocking (bool) – wait until moving is finished; default False

	
move_velocity(direction, blocking)

	
Moves the T-cube with a certain velocity until it gets stoped.

The method check_move will give back the correct units.

If blocking is True, it will move until its done.

If blocking is False, it might not reach its destination if you dont give it time.

	Parameters

	
	blocking (bool) – wait until moving is finished; default False

	direction (1 for forward 2 for backward) – direction of movement

	
moving_loop()

	
This method is used by the move_home, move_relative and move_absolute methods.

It stays in the while loop until the position is reached or self.stop is set to True,

meanwhile updating the current_position as known in this instrument level.

This means it can be used in higher levels to display the position on the gui and thread the stop function.

If the sleeps are making your program too slow, they could be changed.

Pay attention not to make the first sleep too short, otherwise it already starts asking before the guy even knows whether he moves.

	
position()

	
Asks the position to the controller and returns that.

Units depend on the kind of device; either mm or degrees.

Remembers the current_position as declared in the init.

	Returns

	position in mm or degrees

	Return type

	pint quantity

	
set_axis_info()

	
Executes get_axis_info to set the kind of device, and changes the minimum position to -12.0.

This is important because the stage axis puts itself at 0 if you shut down the cubes,

so it happens that afterwards you want to go to a negative position.

To prevent errors, this method changes the minimum position from 0 to -12.0.

	
stop_moving()

	
Stop motor but turn down velocity slowly (profiled).

Winspec Instrument

Aron Opheij, TU Delft 2019

IMPORTANT REMARK:
In the current implementation it is not possible to use this instrument in threads.

Tips for finding new functionality:

Once you have an WinspecInstr object named ws, try the following things:
This will list all keywords:
[key for key in ws.controller.params]
There are shorter lists with only experiment (EXP) and spectrograph (SPT) commands:
[key for key in ws.controller.params_exp] # note that prefix EXP_ is removed
[key for key in ws.controller.params_spt] # note that prefix SPT_ is removed
To filter in those you could try:
[key for key in ws.controller.params_exp if ‘EXPOSURE’ in key]
[key for key in ws.controller.params_spt if ‘GROOVES’ in key]

To request the value for a keyword try:
ws.controller.exp_get(‘EXPOSURETIME’)
ws.controller.exp_get(‘GRAT_GROOVES’)

See also

<no title>

	
class hyperion.instrument.spectrum.winspec_instr.WinspecInstr(settings)

	Winspec Instrument

	Parameters

	settings (dict) – this includes all the settings needed to connect to the device in question.

Information for settings dict:
To overwrite certain possible values add a key conaining a list of possible values to the settings dict:
For example, if your WinSpec does not have ‘Normal’ mod in shutter_controls, add this key:
shutter_controls:
- Closed
- Opened

	
accumulations

	attribute: Number of Accumulations.

	Getter

	Returns the Number of Accumulations set in Winspec

	Setter

	Attempts to updates the Number of Accumulations in Winspec if required. Gives warning if failed.

	Type

	int

	
ascii_output

	attribute: Also save as ASCII file (next to SPE)

	Getter

	Returns if ASCII save is enabled.

	Setter

	Sets saving as ASCII file.

	Type

	bool

	
autosave

	attribute: Auto-save and prompts:
default possible values: ‘Ask’, ‘Auto’, ‘No’

	Type

	str

	
avalanche_gain

	Get the avalanche gain (only available with EM CCD camera)

	Getter

	Returns avalanche gain in Winspec

	Setter

	Tries to change avalanche gain in Winspec if required.

	Type

	int

	
bg_file

	attribute: Full path to Background File
Note: it does not check if the file exists or is it is a valid file.

	Type

	string

	
bg_subtract

	attribute: Background Subtraction

	Getter

	Returns if Background Subtraction is enabled.

	Setter

	Sets Background Subtraction.

	Type

	bool

	
ccd

	attribute: CCD Readout mode.
default possible values: ‘Full’ ‘ROI’

	Type

	str

	
central_nm

	attribute: Central position of grating in nm

	Getter

	Returns current central position of grating

	Setter

	Rotates grating to new nm position. Waits for it to complete.

	Type

	float

	
collect_spectrum(wait=True, sleeptime=True)

	
Retrieves the last acquired spectrum from Winspec.

There are a few possibilities:

- you are not using the autosave of winspec: there will be no sleeps

- you are using the autosave of winspec, but not saving the ascii: there will be no sleeps

- you are using the autosave of winspec, and saving ascii: you need some sleeptime, otherwise things break

- in case of acquiring a spectrum, 0.1s is enough for sleeping

- in case of acquiring an image, you need 1s in between and 2s afterwards

Winspec does wait while acquiring data, but does not send a wait command when it is autosaving.

So the combination of autosaving big ascii data in a scan would cause problems without the sleep.

Pay attention: if you do get the sleeps unwanted, check whether you are sending the correct config yml file!

	Parameters

	
	wait (bool) – If wait is True (DEFAULT) it will wait for WinSpec to finish collecting data.

	sleeptime (bool) – Sleeptime adds some sleeps to make sure Winspec has enough time to Autosave ascii images

	Returns

	list or nested list

	
confirm_overwrite

	attribute: Confirm Overwrite File

	Type

	bool

	
current_temp

	read-only attribute: Temperature measured by Winspec in degrees Celcius.

	Getter

	Returns the Temperature measured by Winspec.

	Type

	float

	
delay_time_s

	attribute: The delay time under Experiment/Timing in seconds

	Type

	float

	
display_flip

	attribute: Display Flip (up-down).

	Getter

	Returns if Display Flip is set in Winspec.

	Setter

	Sets Display Flip in Winspec.

	Type

	bool

	
display_reverse

	attribute: Display Reverse (left-right)

	Getter

	Returns if Display Reverse is set in Winspec.

	Setter

	Sets Display Reverse in Winspec.

	Type

	bool

	
display_rotate

	attribute: Display Rotate.

	Getter

	Returns if Display Rotation is set in Winspec.

	Setter

	Sets Display Rotation in Winspec.

	Type

	bool

	
exposure_time

	attribute: Exposure Time.

	Getter

	Returns the Exposure Time set in Winspec

	Setter

	Attempts to updates the Exposure Time in Winspec if required. Gives warning if failed.

	Type

	Pint Quantity of unit time

	
fast_safe

	attribute: Fast or Safe mode in Experiment/Timing
default possible values: ‘Fast’, ‘Safe’

	Type

	str

	
file_increment

	auto increments file or not

	Type

	bool

	
filename

	Note that this needs to be set before acquiring a spectrum.
If you want to store the SPE files as well, the best approach is to make sure self.autosave = ‘Auto’

use take_spectrum(‘new_name.SPE’)
:return:

	
finalize()

	Mandatory function. Get’s called when exiting a ‘with’ statement.

	
gain

	attribute: ADC Gain value.

	Getter

	Returns Gain set in Winspec

	Setter

	Attempts to updates Gain setting in Winspec if required. Gives warning if failed.

	Type

	int

	
getROI()

	Retrieve current Region Of Interest.
:return: list containing [top, bottom, v_binsize, left, right, h_binsize]

	
grating

	attribute: Grating number (starts at 1)

	Getter

	Returns current grating number

	Setter

	Switched to new grating. Waits for it to complete.

	Type

	int

	
idn()

	Identify command

	Returns

	Identification string of the device.

	Return type

	string

	
initialize()

	Starts the connection to the Winspec softare and retrieves parameters.

	
is_acquiring

	Read only property that indicates if WinSpec is still busy acquiring. Returns True or False.

	
nm_axis()

	Returns list with nm axis values of last collected spectrum.

	
saveas(filename)

	Make WinSpec save current spectrum to disk (in format specified in WinSpec).
Note: I’s also possible to use autosave function of WinSpec: self.autosave = ‘Auto’

	Parameters

	filename (string) – The full path to save the file. If None specified it used default name.

	Returns

	

	
setROI(top='full_im', bottom=None, v_binsize=None, left=1, right=None, h_binsize=1)

	Note for the new camera (the 1024x1024 one) the horizontal range needs to be a multiple of 4 pixels.
If the users input fails this criterium, this method will expand the range.
Also the v_group and h_group, need to fit in the specified range. If the input fails, a suitable value will be used. And the user will be warned.

	Parameters

	
	top – Top-pixel number (inclusive) (integer starting at 1). Alternatively ‘full_im’ (=DEFAULT) of ‘full_spec’ can be use.

	bottom – Bottom-pixel number (integer). DEFAULT value is bottom of chip

	v_binsize – Vertical bin-size in number of pixels (integer). None sums from ‘top’ to ‘bottom’. DEFAULT: None

	left – Left-pixel number (inclusive) (integer starting from 1). DEFAULT is 1

	right – Right-pixel number (integer). DEFAULT is rightmost pixel

	h_binsize – Horizontal binning (integer), DEFAULT is 1

	Returns

	

	Examples

	>>>
setROI('full_im') returns the full CCD
setROI('full_spec') returns the full CCD, summed vertically to result in 1D array
setROI(51) sums from pixel 51 to the bottom
setROI(51, 70) sums vertically from pixel 51 to 70
setROI(51, 70, 20) sums vertically from pixel 51 to 70
setROI(41, 60, 5) result in 4 bins of 5 pixles
setROI(41, 60, 1) no binning, result will be 20 pixels high
setROI(41, 60, None, 101, 601) modify horizontal range
setROI(41, 60, None, 101, 601, 10) apply horizontal binning of 10 pixels (result will be 50 datapoints wide)

	
shutter_control

	attribute: Shutter Control
default possible values: ? , ‘Free Run’, ? , ‘External Sync’

	Type

	str

	
spec_mode

	attribute: True for Spectroscopy Mode, False for Imaging Mode

	Type

	bool

	
start_acquiring(name=None)

	Starts acquisition of spectrum. Does not wait for it to finish.
If name is specified. The last spectrum in WinSpec is closed and a new spectrum with the specified name is created.
If name is None (DEFAULT) the current spectrum will be overwritten.

	Parameters

	name (string) – Full path to file to store. Or None, for using default.

	
take_spectrum(name=None, sleeptime=True)

	Acquire spectrum, wait for data and collect it.
Performs start_acquiring(name), followed by collect_spectrum(True).
See those methods for more details.

	
take_spectrum_alt(name=None, sleeptime=True)

	Acquire spectrum, wait for data and collect it.
Performs start_acquiring(name), followed by collect_spectrum(True).
See those methods for more details.

	
target_temp

	attribute: Detector target temperature in degrees Celcius.

	Getter

	Returns Target Temperature set in Winspec

	Setter

	Attempts to updates Target Temperature in Winspec if required. Gives warning if failed.

	Type

	float

	
temp_locked

	read-only attribute: Temperature locked state measured by Winspec in degrees Celcius.

	Getter

	Returns True is the Temperature is “locked”

	Type

	bool

	
timing_mode

	attribute: Timing Mode
default possible values: ‘Normal’, ‘Closed’, ‘Opened’

	Type

	str

Beam Flags Instrument

Instrument for homebuilt Arduino based beam flags.
Designed to work with Arduino running:

qnd_simple_double_flag_controller.ino
“QND Simple Double Flag Controller, version 0.1, date 2019-09-17”

	
class hyperion.instrument.misc.beam_flags_instr.BeamFlagsInstr(settings)

	Beam Flags Instrument
Intended to be used with an arduino running:

qnd_simple_double_flag_controller.ino
“QND Simple Double Flag Controller, version 0.1, date 2019-09-17”

	Parameters

	settings (dict) – This includes all the settings needed to connect to the device in question.

	
f1

	bool: Set/get flag with label ‘1’ (True for ‘g’, False for ‘r’)

	
f2

	bool: Set/get flag with label ‘2’ (True for ‘g’, False for ‘r’)

	
f3

	bool: Set/get flag with label ‘2’ (True for ‘g’, False for ‘r’)

	
finalize()

	Closes the connection to the device.

	
get_flag(flag_number)

	Get flag state as bool. Identify flag by its number (in stead of string)

	Parameters

	flag_number (int) – The number indicating the flag

	Returns

	True for ‘g’ and False for ‘r’, (None for other)

	Return type

	bool

	
get_specific_flag_state(flag_name)

	Query the state of a specific flag.
Also updates this Instruments internal state
if the flag name occurs in the dictionary.
(Does not check for valid flag_name)

	Parameters

	flag_name (string) – the name of the flag

	Returns

	state of the flag

	Return type

	string

	
idn()

	Identify command.

	Returns

	Identification string of the device (if it has it)

	Return type

	str

	
initialize()

	Starts the connection to the device.

	
passive_update_from_manual_changes()

	When toggle switches are manually changed, the arduino
will send messages like 1g or 2r.
This method will read the Serial buffer-in and update this
Instruments internal state of the flags according to the
last states found in the buffer.

	Returns

	if it changed any state

	Return type

	bool

	
set_flag(flag_number, bool_state)

	Set flag using its number and bool state.

	Parameters

	
	flag_number (int) –

	bool_state (bool) – flag state (True for ‘g’, False for ‘r’)

	
set_specific_flag_state(flag_name, flag_state)

	Sets a beam flag to a specific state.

	Parameters

	
	flag_name (str) – The one character flag name listed in the settings (i.e. ‘1’ or ‘2’)

	flag_state (str) – The one character state string listed in the settings (i.e. ‘r’ or ‘g’)

	
update_all_states()

	Queries all flag states and updates this Instruments internal flag states.
Returns if any internal state has changed.

	Returns

	true if any state has changed

	Return type

	bool

Testing

In order to help and guide the developer we have created some
tests for the specific functionality of each level in the code.
The idea is that every time some code is developed, a test is also
written so it can be used to ensure the correct behaivour of the code.

We have some basic unit tests in the folder unit_tests. So far we
have the following tests

Unit tests

Current unit tests:

	Test LCC25 controller

	Test Agilent33522A controller

	Test variable waveplate instrument

	Test FunGen instrument

Test LCC25 controller

This class aims to unit_test the correct behaviour of the controller class: LCC25.py

If you have changed something in the controller layer, you should check that the
functionalities of if are still running properly by running this class and adding
a method to unit_test the new methods in the controller, if any.

	copyright

	by Hyperion Authors, see AUTHORS for more details.

	license

	BSD, see LICENSE for more details.

	
class hyperion.unit_test.lcc_controller.UTestLcc(settings)

	Class to unit_test the LCC25 controller.

	
finalize()

	closes connection

	
test_freq()

	Test the freq command

	
test_mode()

	Test the mode methods

	
test_output()

	Test the output state

	
test_voltage()

	unit_test setter and getter for the voltage1

Test Agilent33522A controller

This class aims to unit_test the correct behaviour of the controller class: agilent33522A.py

If you have changed something in the controller layer, you should check that the
functionalities of if are still running properly by running this class and adding
a method to unit_test the new methods in the controller, if any.

	copyright

	by Hyperion Authors, see AUTHORS for more details.

	license

	BSD, see LICENSE for more details.

	
class hyperion.unit_test.agilent33522A_controller.UTestAgilent33522A(settings)

	Class to unit_test the LCC25 controller.

	
finalize()

	closes connection

	
test_all_amplitudes()

	To test all the amplitude related setters and getters

	
test_amplitude()

	unit_test setter and getter for the amplitude (Vpp)

	
test_enable_output()

	Test the enable output getter and setter

	
test_freq()

	Test the getter and setter for the frequency command

	
test_mode()

	Test the mode methods

Test variable waveplate instrument

This class aims to unit_test the correct behaviour of the instrument class: variable_waveplate

If you have changed something in the controller and or instrument layer, you should check that the
functionalities of if are still running properly by running this class and adding
a method to unit_test the new methods in the instrument, if any.

	copyright

	by Hyperion Authors, see AUTHORS for more details.

	license

	BSD, see LICENSE for more details.

	
class hyperion.unit_test.variable_waveplate_instrument.UTestVariableWaveplate(settings)

	Class to unit_test the LCC25 controller.

	
finalize()

	closes connection

	
test_freq()

	Test the freq command

	
test_mode()

	Test the mode methods

	
test_output()

	Test the output state

	
test_voltage()

	unit_test setter and getter for the voltage1

Test FunGen instrument

This class aims to unit_test the correct behaviour of the instrument class: fun_gen

If you have changed something in the controller and or instrument layer, you should check that the
functionalities of if are still running properly by running this class and adding
a method to unit_test the new methods in the instrument, if any.

NOTE: This is still not implemented as a class, it just runs commands using the instrument. The assertion
part has to be done, still.

	copyright

	by Hyperion Authors, see AUTHORS for more details.

	license

	BSD, see LICENSE for more details.

	
class hyperion.unit_test.fun_gen_instrument.UTestFunGen(settings)

	Class to unit_test the FunGen instrument.

	
finalize()

	closes connection

Tools

We also have some useful tools that are used around the whole project.
We list them here.

Tools:

	Array Tools

	Saving tools

	UI tools

Array Tools

Here we group some array tools that we use in the project.

	copyright

	by Hyperion Authors, see AUTHORS for more details.

	license

	BSD, see LICENSE for more details.

	
hyperion.tools.array_tools.array_from_pint_quantities(start, stop, step=None, num=None)

	Generates an array from pint values.
Use either step or num to divide the range up in steps. (If both are specified, step is used)
Using num works similar to numpy.linspace(start, stop, num).
Using step works somewhat similar numpy.arange(start, stop, step). Modifications are that the sign of step will be
interpreted automatically. And the issue of a missing endpoint due to tiny floating point errors is mitigated.
It returns a numpy array and the pint unit.

	Parameters

	
	start (pint.quantity) – The start value of the array

	stop (pint.quantity) – The end value for determining the array

	step (pint.quantity) – The stepsize between points

	num (int) – Number of points generate

	Returns

	a, b

	Return type

	(numpy.array, pint.unit)

	
hyperion.tools.array_tools.array_from_settings_dict(sweep_dict)

	Wrapper around array_from_string_quantities().
sweep_dict should contain ‘start’ and ‘stop’ key. And either ‘step’ or ‘num’ key.
The values may have units (that can be interpreted by pint).
See array_from_string_quantities() and array_from_pint_quantities() for further details.

	Parameters

	sweep_dict – Dictionary containing start, stop and step or num keys

	Returns

	(numpy.array, pint.unit)

	
hyperion.tools.array_tools.array_from_string_quantities(start, stop, step=None, num=None)

	Wrapper around array_from_pint_quantities() that converts string arguments to pint quantities.
Arguments start, stop and step should be strings, num could be integer (or string of integer).
See array_from_pint_quantities() for further details.

Saving tools

This is a collection of useful methods related to saving data and metadata
used along hyperion.

	copyright

	by Hyperion Authors, see AUTHORS for more details.

	license

	BSD, see LICENSE for more details.

	
hyperion.tools.saving_tools.create_filename(file_path)

	Creates the filename, so all the methods point to the same folder
and save with the same name. The output does not include the extension but the input does.

	Parameters

	filename (string (path)) – config filename complete path (INCLUDING the extension)

	Returns

	filename with a number appended so it would not be overwritten.

	Return type

	string

	
hyperion.tools.saving_tools.name_incrementer(basename, list_of_existing, separator='_', fill_zeros=0, use_number_for_first=None, only_larger_number=True)

	This function is meant to avoid rewriting existing files.

	Parameters

	
	basename – The basename. May include extension.

	list_of_existing – List of names to avoid

	separator – Optional separator between basename and number, DEFAULT is ‘_’

	fill_zeros – If you set this to 4, numbers will look like 0012, 0013. Special case 0 (DEFAULT) will match the longest one in list_of_existing

	use_number_for_first – 0, 1, None. If the name does not occur yet it will get 0, 1 or no sufix, DEFAULT is None

	only_larger_number – If name_1 and name_3 exist and only_larger_number is True DEFAULT, name_4 will be suggested, otherwise name_2

	Returns

	The suggested name.

	
hyperion.tools.saving_tools.read_netcdf4_and_plot_all(filename)

	Reads the file in filename and plots all the detectors

	
hyperion.tools.saving_tools.save_metadata(file_path, properties)

	Saves the the properties in a yml file at the file file_path

	type file_path

	str

	param properties

	dictionary containing the me :param file_path: complete filepath to the location to be saved.

	tadata

	
	type properties

	dict

	
hyperion.tools.saving_tools.save_netCDF4(filename, detectors, data, axes, axes_name, errors=None, extra_dims=None, description=None)

	This function saves the data in a netCDF4 format, including units and
the axes corresponding to the data. For more info about the package used,
please see http://unidata.github.io/netcdf4-python/netCDF4/index.html.
For info on the format itself, refer to: https://www.unidata.ucar.edu/software/netcdf/docs/index.html

	Parameters

	
	detectors (list of strings) – list of the detectors used

	data (list of numpy ndarrays of pint quantities) – list with the actual data corresponding to each detector

	axes – corresponding coordinates for the data. the dimension of the i element

in the list has to match the dimension of the i-th dimension of data.
:type axes: list of vectors of pint quantity
:param axes_name: the name of each of the axes
:type axes_name: list of strings
:param errors: measured errors for each of the detectors. It has to have the same dimensions as data.
:type errors: list of numpy ndarrays of pint quantities
:param extra_dims: A dict containing extra values fixed and all the same for the set.
:type extra_dims: dict
:param description: an extra descriptive message can be put here.
:type description: string

	
hyperion.tools.saving_tools.yaml_dump_builtin_types_only(object, stream=None, mode='remove', replace_with='_invalid_', dump=True)

	A replacement for yaml.dump that skips object that can’t be dumped safely.
Dictionaries and lists are searched recursively.
It has 3 modes how to handle invalid entries:
remove: removes the entry
repr: replaces the object with object.__repr__()
replace: replaces with the value in replace_with
To return the modified object instead of dumping it, set dump to False.
(Note, in case of DefaultDict or ActionDict it only stores the main dict).

	Parameters

	
	object – The object to dump

	stream – The stream to save the yaml dump (default: None)

	(str) (mode) – ‘remove’ (default), ‘repr’, ‘replace’

	replace_with – What to replace the invalid entry with (default ‘_invalid_’)

	(bool) (dump) – Dumps to stream when True, returns modified object when False. (default: True)

	Returns

	

UI tools

We group many functions useful for when building GUIS.

	copyright

	by Hyperion Authors, see AUTHORS for more details.

	license

	BSD, see LICENSE for more details.

	
hyperion.tools.ui_tools.add_pint_to_combo(comboBox_units, manual_list=None)

	When GUI has a QComboBox with units, this function can convert the display texts of the units to pint units and
stores them inside the combobox object. (Run this function once).
It is possible to manually specify the list to store, but it’s safer to try automatic conversion.

	Parameters

	
	comboBox_units (QComboBox) –

	manual_list (list of pint units) – OPTIONAL list of pint units corresponding to the display units

	
hyperion.tools.ui_tools.pint_to_spin_combo(pint_quantity, doubleSpinBox, comboBox_units)

	When a GUI has a combination of a Q(Double)SpinBox and a QComboBox that hold the numeric value and the unit
respectively, this function can be used to easily put a pint quantity into that combination.
It is strongly recommended to use add_pint_to_combo(comboBox_units) before using this function!
Complementary function is spin_combo_to_pint_apply_limits()

	Parameters

	
	pint_quantity (pint quantity) – the pint quantity to write into the gui objects

	doubleSpinBox (QDoubleSpinBox (Maybe QSpinBox also works. Not tested)) – the QDoubleSpinBox (or QSpinBox?) that holds the numeric value

	comboBox_units (QComboBox) – the QComboBox that holds the units

	
hyperion.tools.ui_tools.spin_combo_to_pint_apply_limits(doubleSpinBox, comboBox_units, pint_lower_limit=None, pint_upper_limit=None)

	When a GUI has a combination of a Q(Double)SpinBox and a QComboBox that hold the numeric value and the unit
respectively, this function can be used to convert the combined values to a pint quantity.
In addition it applies limits if they are specified.
Typically you’ll make one function limit_and_apply_X in your gui code, and connect both

>>> doubleSpinBox.valueChanged.connect(limit_and_apply_X)
>>> comboBox_units.currentIndexChanged.connect(limit_and_apply_X)

to this function. Inside limit_and_apply_X() you would use this function spin_combo_to_pint_apply_limits() to apply
limits and convert it to a pint quantity

It is strongly recommended to use add_pint_to_combo(comboBox_units) before using this function!
Complementary function is pint_to_spin_combo()

	Parameters

	
	doubleSpinBox – Q(Double)SpinBox that holds the numeric value

	comboBox_units – QComboBox that holds the units

	pint_lower_limit – OPTIONAL pint quantity for the lower limit to apply

	pint_upper_limit – OPTIONAL pint quantity for the upper limit to apply

	Returns

	pint quantity

View and GUI

Here we group the information about the higher layer of complexity
in our code: the GUI. Building a GUI requires time and in many
cases is not needed.

Hyperion Core Utilities

Explanation of how to use logging

Short version:

There is a single logging manager that you import in your files. This logging manager can create a logger objects (which
you use in your files and classes to do log-prints like logger.info(‘bla’). When creating the logger object, a stream
handler (writes to screen) and a file handler are passed with it. These take care of the layout, the level (e.g. whether
lower levels like debug or info are printed), and which file to write to. You can choose to disable the stream or file
handler, modify their layout and levels individually. The stream handler colors can be turned on or off and the color
format can be modified.

Full explanation:

In hyperion.core the class LoggingManager is defined. It is a “Singleton” class meaning that all instantiations of this
class are actually one and the same object.|br|
In hyperion.core one object is already instantiated by the name of logman.|br|
In hyperion __init__.py this is imported under the alias name logging.|br|
Because it’s a singleton class the following approaches of importing the logging manager object are all equivalent:

	from hyperion import logging

	from hyperion.core import logman as logging

	from hyperion.core import logman

	from hyperion.core import LoggingManager
import hyperion
log = LoggingManager(hyperion.log_path, ‘my_log_name.log’)

	import hyperion.core
log = hyperion.core.LoggingManager()

In all cases above logging, logman and log refer to the same single object of class LoggingManager.
For the rest of the following explanation logman is used, but if you’re modifying an existing file that used logging,
you could remove the ‘import logging’ and replace it with ‘from hyperion import logging’.
Note, the optional arguments are default_path and default_name for logging file.
LoggingManager has two optional arguments default_path and default_name, which are used as default values for creating
the log file. By default, the path is hyperion.log_path and the name is ‘hyperion.log’
In your own project you could change those if you like.

Now, to use logging in your module (file) or in your class, you have to create a logger:
logger = logman.getLogger(__name__)
Note that instead of the usual module name __name__ you could hypothetically put in any string.
Note that as a shorthand you can also do directly: logger=logman(__name__)
When the logger is created, by default, both the stream handler and the file handler are passed with it. These take care
of printing to the screen and to a file. If you don’t want to add both, you could omit adding them by setting the
optional keyword arguments add_stream or add_file to False. e.g.; logger = logman.getLogger(__name__, add_file=False)

Before creating a logger object, you can:

	Change the default path or name of the logfile in the stream_handler:
logman.default_path = ‘d:’
logman.default_name = ‘my_project.log’

	Set the level of the default stream or file handler in the logging manager (defaults are DEBUG)
logman.stream_level = logman.WARNING # note: you could also pass in the string ‘WARNING’
logman.file_level = ‘INFO’ # note: you could also pass in logman.INFO
(Note that changing the level in the manager after a logger object is created is likely to also affect that logger.
This depends if the handler was modified in the meantime. If it wasn’t, then it’s the same object.)

	Change the default stream or file handler in the logging manager
Change layout, file name, colors. See below.

	Enable/disable whether the stream of the file handler is passed when a logger object is created (default is True).
logman.enable_stream = False
logman.enable_file = True

After creating a logger object you can still:

	Add handlers
logman.remove_stream_handler(my_handler)
logman.remove_file_handler(my_handler)

	Or remove handlers
logman.add_stream_handler(my_handler)
logman.add_file_handler(my_handler)

	And you can modify the logging level of its handers. Just be aware that if the handlers in the manager weren’t
modified in the meantime, changing the level of one logger may change the level of others as well.
logman.set_logger_stream_level(my_handler, ‘WARNING’)
logman.set_logger_file_level(my_handler, logman.INFO)

Finally, explanation of setting up the handlers:

To create (or replace) the handlers use:
logman.set_stream(optional arguments)
logman.set_file(optional arguments)
All arguments are optional (they have a default value if omitted)
The arguements in both set_stream and set_file are:

	
	level If omitted, the default value is used

	(default value can be set by logman.stream_level / logman.file_level)

	
	reduce_duplicates Enables a Filer that detect repeated log comments (that were in a loop) and reduces the number

	of lines printed. Defaults to True

	
	compact A float between 0 and 1. A measure of how long or compact a line will be. 0 Means full length.

	As the value of compact is increased the lines will become shorter. At 1 the line will be most
compact and it will be cut off at length maxwidth.
Default value for set_stream is 0.5, default value for set_file is 0

	maxwidth See description of compact. Default value is 119

Arguments only in set_stream:

	color A bool that determines whether to use colors when printing levels names. Defaults to True

	
	color_scheme A string indicating color_scheme. Possible values are: bright, dim, mixed, bg, universal

	If the logger is used in Spyder it diverts to a modified scheme. To manually select different
schemes for both non-Spyder and Spyder do something like color_scheme=(‘mixed’, ‘spy_bright’)
Scheme ‘universal’ will be readable and most similar on Spyder, Pycharm, PyCharm-darcula,
regular black terminal and blue PowerShell terminal. But it’s not ver esthetically pleasing, so
the default is (‘bright’, ‘spy_bright’)

	All other keyword arguments are passed into logging.StreamHandler().

Arguments only in set_file:

	
	pathname The path or only filename or full file-path. If path is not included it will use the default

	path. If name is not included it will use the default name)

	All other keyword arguments are passed into logging.handlers.RotatingFileHandler().
maxBytes will default to 5MB and backupCount will default to 9

example code 1:

from hyperion import logging

class A:
 def __init__(self):
 self.logger = logging.getLogger(__name__)
 self.logger.info('object of class A created')

if __name__=='__main__':
 logging.enable_file = False
 logging.stream_level = 'INFO'
 logging.set_stream(compact=0.4, color=False)
 a = A()

example code 2:

from hyperion.core import logman

class A:
 def __init__(self):
 logger = logman(__name__, add_stream=False) # no stream logging at all for this class
 logger.info('object of class A created')

class B:
 def __init__(self):
 self.logger = logman(__name__)
 self.logger.info('object B: 1 - info')

 # Temporarily change logging level (note that this may affect other loggers as well)
 lvl = logman.get_logger_stream_level(self.logger)
 logman.set_logger_stream_level(self.logger, 'WARNING')
 self.logger.info('object B: 2 - info')
 self.logger.warning('object B: 2 - warning')
 logman.set_logger_stream_level(self.logger, lvl)

 self.logger.info('object B: 3 - info')

class C:
 def __init__(self):
 self.logger = logman(__name__)
 self.logger.info('object C: 1 - info')

 # Temporarily remove handler from logger
 h = logman.remove_stream_handler(self.logger) # storing it in h is optional
 self.logger.info('object C: 2 - info')
 self.logger.warning('object C: 2 - warning')
 # To restore the exact handler:
 self.logger.addHandler(h)
 # It's also possible to add the handler from the manager:
 # logman.add_file_handler(self.logger)

 self.logger.info('object C: 3 - info')

if __name__=='__main__':
 logging.default_name = 'my_project.log'
 logging.set_stream(compact=0.4, color=False)
 a = A()
 b = B()
 c = C()

	
class hyperion.core.ANSIcolorFormat(enable=True)

	Class used as a wrapper function to apply colors to console prints.
Arguments are the string followed by one or more color ‘decorators’:
First letter of basic colors: r, g, y, b, m, c, w for white, k for black.
Letter Preceded by an l means a lighter/brighter color (if supported).
Letter(s) preceded by an underscore ‘_’ means background color.
Notes on PyCharm: ‘emph’ creates bold text. Darcula mode changes colors
into bland “pastel-like” colors and inverts pure white and black.
Notes on general command/prompt window: ‘emph’ turns dark text to bright.
Notes on Spyder: Does not support “light” colors with an “l”, ‘emph’/’norm’
turns both text and background simultaneously to bright/dim.

The ‘decorators’ can be passed as multiple arguments or a tuple or a list.
A single string of ansi color code is also accepted (e.g. ‘1;46;31’)
If no additional arguments or the argument None is passed it returns the
message without adding ansi color codes.
The enabled property allows for toggling all color action of this object at once.
The class method disable_all() allows to disable all color printing of all objects.

	Note: It’s also possible to do from hyperion.core import ansicol

	Then you’re using the same object (i.e. toggling that object will influence all)

	Example usage:

	from hyperion.core import ANSIcolorFormat
ansicol = ANSIcolorFormat()
print(ansicol(‘Hello World’,’emph’,’r’,’_y’))
print(ansicol(‘Hello World’))
ansicol.enabled = False
print(ansicol(‘Hello World’,’emph’,’r’,’_y’))

	
static disable_all(boolean)

	Class Method (with boolean input) to disable all color printing of all ANSIcolorFormat objects at once.
Useful if your system can’t deal with ANSI color codes.
Note that this will overrule the enabled state of individual objects.
Being a class method this can be run both on an object and directly on the class, like
ANSIcolorFormat.disable_all(False)

	
enabled

	Boolean property to get or set whether this ANSIcolorFormat object is enabled.
If enabled is false it will not print colors.
Note that the class disabled_all state overrules this object state.
To enable you may also have to do .disable_all(False) on the object or on the class.

	
class hyperion.core.CustomFormatter(compact=0.0, maxwidth=None, color=False, color_scheme=None)

	Custom format for log-prints.
Adds a lot of information (time, module, line number, method, LEVEL, message)
Setting the compact parameter to a value larger than 0 shrinks the date, module and method.
Setting it to 1 (maximum) assures the length is maxwidth characters or less.
The possible regular color schemes are: bright, dim, mixed, bg, universal. The optional additional secondary color
schemes for Spyder are: spy_bright, spy_dim, spy_mixed, spy_bg, spy_universal.
Specifying no color_scheme defaults to bright (and spy_bright if Spyder is detected).

	Parameters

	
	compact – float from 0 for full length, to 1 for very compact (defaults to 0)

	maxwidth – integer indicating max line width when compact is 1. None (default) uses 119.

	color – boolean indicating if ANSI colors should be used (defaults to False)

	color_scheme – string or tuple/list of two strings (defaults to bright / spy_bri)

	
format(record)

	Format the specified record as text.

The record’s attribute dictionary is used as the operand to a
string formatting operation which yields the returned string.
Before formatting the dictionary, a couple of preparatory steps
are carried out. The message attribute of the record is computed
using LogRecord.getMessage(). If the formatting string uses the
time (as determined by a call to usesTime(), formatTime() is
called to format the event time. If there is exception information,
it is formatted using formatException() and appended to the message.

	
class hyperion.core.DuplicateFilter(name='')

	Adding this filter to a logging handler will reduce repeated log-prints

	
filter(record)

	Determine if the specified record is to be logged.

Is the specified record to be logged? Returns 0 for no, nonzero for
yes. If deemed appropriate, the record may be modified in-place.

	
class hyperion.core.LoggingManager(default_path='/home/docs/checkouts/readthedocs.org/user_builds/nanooptics-hyperion/envs/develop/lib/python3.7/site-packages/logs', default_name='hyperion.log')

	LogginManager class. This is a “Singleton” class which means that all of its instantiatons refer to one and the same
object. If one tries to create a second object, the original object is returned.
For a more elaborate explanation on how to use, see beginning of page.

	Variables

	
	enable_stream – (bool) If true, the stream handler is passed to newly created logger objects (default is True)

	enable_file – (bool) If true, the file handler is passed to newly created logger objects (default is True)

	default_path – (str) Default path for logfile when file handler is created without specifying path (default hyperion.log_path)

	default_name – (str) Default filename for logfile when file handler is created without specifying filename (default ‘hyperion.log;)

	
add_file_handler(logger)

	Add file_handler to an existing logger object.

	Parameters

	logger – a logger object

	
add_stream_handler(logger)

	Add stream_handler to an existing logger object.

	Parameters

	logger – a logger object

	
file_level

	Property to read and set the level of the current file handler.
When setting it also updates the default level.

	
getLogger(name, add_stream=None, add_file=None)

	Returns logger object.

	Parameters

	
	name – (str) Name, usually the module name. i.e. __name__

	add_stream – (bool or None) add the streamhandler. None (default) uses object.enalbe_stream

	add_file – (bool or None) add the streamhandler. None (default) uses object.enalbe_stream

	Returns

	logger object

	
get_logger_file_level(logger)

	Get the level of the (first) file handler of an existing logger object.

	Parameters

	logger – existing logger object

	
get_logger_stream_level(logger)

	Get the level of the (first) stream handler of an existing logger object.

	Parameters

	logger – existing logger object

	
remove_file_handlers(logger)

	Remove stream_handlers from an existing logger object.

	Parameters

	logger – a logger object

	Returns

	the removed file handler object (or None)

	
remove_stream_handler(logger)

	Remove stream_handlers from an existing logger object.

	Parameters

	logger – a logger object

	Returns

	the removed stream handler object (or None)

	
set_file(pathname=None, level=None, compact=0, reduce_duplicates=True, maxwidth=None, maxBytes=5242880, backupCount=9, **kwargs)

	Sets (replaces) the file handler in the logging manager object.

	Parameters

	
	pathname – path or filename or full file-path (if only name or path is given, the other will use the default value)

	level – logging level. If omitted, default is used. To change default see file_level

	compact – see CustomFormatter (defaults to 0)

	maxwidth – see CustomFormatter

	reduce_duplicates – (bool) (defaults to True)

	maxBytes – see logging.handlers.RotatingFileHandler() (defaults to 5 * 1024 * 1024)

	backupCount – see logging.handlers.RotatingFileHandler() (defaults to 9)

	**kwargs – additional keyword arguments are passed into logging.handlers.RotatingFileHandler()

	
set_logger_file_level(logger, level)

	Change level of the file handler of an existing logger object.
Note that this may affect other logger object, because they may share the same file handler object.

	Parameters

	
	logger – existing logger object

	level – string like ‘WARNING’ or level like logman.WARNING

	
set_logger_stream_level(logger, level)

	Change level of the stream handler of an existing logger object.
Note that this may affect other logger object, because they may share the same stream handler object.

	Parameters

	
	logger – existing logger object

	level – string like ‘WARNING’ or level like logman.WARNING

	
set_stream(color=True, level=None, compact=0.5, reduce_duplicates=True, maxwidth=None, color_scheme=None, **kwargs)

	Sets (replaces) the stream handler in the logging manager object.

	Parameters

	
	color – (bool) whether to print levelnames with color

	level – logging level. If omitted, default is used. To change default see file_level

	compact – see CustomFormatter (defaults to 0)

	maxwidth – see CustomFormatter

	reduce_duplicates – (bool) (defaults to True)

	color_scheme – (str or (str,str)) color scheme to use, see above for possible values

	**kwargs – additional keyword arguments are passed into logging.StreamHandler()

	Returns

	

	
stream_level

	Property to read and set the level of the current stream handler.
When setting it also updates the default level.

	
class hyperion.core.Singleton

	Metaclass to use for classes of which you only want one instance to exist.
use like: class MyClass(ParentClass, metaclass=Singleton):
If one tries to create a second object, the original object is returned.

How to install

For installation instructions, please refer to the readme.md in the
root folder of the project.

Authors

Naturally, this list is in continuous change since we have many people
contributing to this project. We try to keep it updated so new developers
can contact others working in the project to benefit from everyone strengths.

This version for the software is strongly based on the ideas presented
in the book “Python For The Lab”.

So far, we have contributed to this project:

	Martin Caldarola (m.caldarola@tudelft.nl)

	Aron Opheij (a.opheij@tudelft.nl)

	Thomas Bauer

	Irina Komen

	Marc Noordam

	Thijs Van Gogh

	Ariel Komen

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 hyperion	

 	
 	
 hyperion.controller.aa.aa_modd18012	

 	
 	
 hyperion.controller.agilent.agilent33522A	

 	
 	
 hyperion.controller.attocube.anc350	

 	
 	
 hyperion.controller.base_controller	

 	
 	
 hyperion.controller.cobolt.cobolt08NLD	

 	
 	
 hyperion.controller.example_controller	

 	
 	
 hyperion.controller.generic.generic_serial_contr	

 	
 	
 hyperion.controller.osa.osa_controller	

 	
 	
 hyperion.controller.picoquant.hydraharp	

 	
 	
 hyperion.controller.rs.thermometer	

 	
 	
 hyperion.controller.sk.sk_pol_ana	

 	
 	
 hyperion.controller.stanford.sr830	

 	
 	
 hyperion.controller.thorlabs.lcc25	

 	
 	
 hyperion.controller.thorlabs.tdc001_cube	

 	
 	
 hyperion.core	

 	
 	
 hyperion.instrument.base_instrument	

 	
 	
 hyperion.instrument.correlator.hydraharp_instrument	

 	
 	
 hyperion.instrument.example_instrument	

 	
 	
 hyperion.instrument.function_generator.fun_gen	

 	
 	
 hyperion.instrument.misc.beam_flags_instr	

 	
 	
 hyperion.instrument.polarization.aa_aotf	

 	
 	
 hyperion.instrument.polarization.polarimeter	

 	
 	
 hyperion.instrument.polarization.variable_waveplate	

 	
 	
 hyperion.instrument.position.anc_instrument	

 	
 	
 hyperion.instrument.position.thorlabs_motor_instr	

 	
 	
 hyperion.instrument.spectrum.osa_instrument	

 	
 	
 hyperion.instrument.spectrum.winspec_instr	

 	
 	
 hyperion.tools.array_tools	

 	
 	
 hyperion.tools.saving_tools	

 	
 	
 hyperion.tools.ui_tools	

 	
 	
 hyperion.unit_test.agilent33522A_controller	

 	
 	
 hyperion.unit_test.fun_gen_instrument	

 	
 	
 hyperion.unit_test.lcc_controller	

 	
 	
 hyperion.unit_test.variable_waveplate_instrument	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Y
 | Z

A

 	
 	AaAotf (class in hyperion.instrument.polarization.aa_aotf)

 	AaModd18012 (class in hyperion.controller.aa.aa_modd18012)

 	AaModd18012Dummy (class in hyperion.controller.aa.aa_modd18012)

 	accumulations (hyperion.instrument.spectrum.winspec_instr.WinspecInstr attribute)

 	acInEnable() (hyperion.controller.attocube.anc350.Anc350 method)

 	add_file_handler() (hyperion.core.LoggingManager method)

 	add_pint_to_combo() (in module hyperion.tools.ui_tools)

 	add_stream_handler() (hyperion.core.LoggingManager method)

 	Agilent33522A (class in hyperion.controller.agilent.agilent33522A)

 	Agilent33522ADummy (class in hyperion.controller.agilent.agilent33522A)

 	amplitude (hyperion.controller.example_controller.ExampleController attribute)

 	(hyperion.instrument.example_instrument.ExampleInstrument attribute)

 	amplitude() (hyperion.controller.attocube.anc350.Anc350 method)

 	
 	amplitudeControl() (hyperion.controller.attocube.anc350.Anc350 method)

 	analog_mod (hyperion.controller.cobolt.cobolt08NLD.Cobolt08NLD attribute)

 	analogli_mod (hyperion.controller.cobolt.cobolt08NLD.Cobolt08NLD attribute)

 	Anc350 (class in hyperion.controller.attocube.anc350)

 	Anc350Dummy (class in hyperion.controller.attocube.anc350)

 	Anc350Instrument (class in hyperion.instrument.position.anc_instrument)

 	ANSIcolorFormat (class in hyperion.core)

 	array_from_pint_quantities() (in module hyperion.tools.array_tools)

 	array_from_settings_dict() (in module hyperion.tools.array_tools)

 	array_from_string_quantities() (in module hyperion.tools.array_tools)

 	ascii_output (hyperion.instrument.spectrum.winspec_instr.WinspecInstr attribute)

 	autosave (hyperion.instrument.spectrum.winspec_instr.WinspecInstr attribute)

 	autostart (hyperion.controller.cobolt.cobolt08NLD.Cobolt08NLD attribute)

 	avalanche_gain (hyperion.instrument.spectrum.winspec_instr.WinspecInstr attribute)

B

 	
 	bandwidthLimitEnable() (hyperion.controller.attocube.anc350.Anc350 method)

 	BaseController (class in hyperion.controller.base_controller)

 	BaseInstrument (class in hyperion.instrument.base_instrument)

 	BaseMetaInstrument (class in hyperion.instrument.base_instrument)

 	BeamFlagsInstr (class in hyperion.instrument.misc.beam_flags_instr)

 	
 	bg_file (hyperion.instrument.spectrum.winspec_instr.WinspecInstr attribute)

 	bg_subtract (hyperion.instrument.spectrum.winspec_instr.WinspecInstr attribute)

 	bitmask() (in module hyperion.controller.attocube.anc350)

 	blanking() (hyperion.controller.aa.aa_modd18012.AaModd18012 method)

 	(hyperion.instrument.polarization.aa_aotf.AaAotf method)

C

 	
 	c_int_p (in module hyperion.controller.picoquant.hydraharp)

 	calibrate() (hyperion.controller.picoquant.hydraharp.Hydraharp method)

 	capacitance() (hyperion.instrument.position.anc_instrument.Anc350Instrument method)

 	capMeasure() (hyperion.controller.attocube.anc350.Anc350 method)

 	ccd (hyperion.instrument.spectrum.winspec_instr.WinspecInstr attribute)

 	central_nm (hyperion.instrument.spectrum.winspec_instr.WinspecInstr attribute)

 	change_wavelength() (hyperion.instrument.polarization.polarimeter.Polarimeter method)

 	check() (hyperion.controller.attocube.anc350.Anc350 method)

 	check_channel() (hyperion.controller.aa.aa_modd18012.AaModd18012 method)

 	(hyperion.controller.agilent.agilent33522A.Agilent33522A method)

 	check_freq() (hyperion.controller.aa.aa_modd18012.AaModd18012 method)

 	check_if_moving() (hyperion.instrument.position.anc_instrument.Anc350Instrument method)

 	check_move() (hyperion.instrument.position.thorlabs_motor_instr.Thorlabsmotor method)

 	check_power() (hyperion.controller.aa.aa_modd18012.AaModd18012 method)

 	choose_channel() (hyperion.instrument.polarization.aa_aotf.AaAotf method)

 	clear_fault (hyperion.controller.cobolt.cobolt08NLD.Cobolt08NLD attribute)

 	clear_fault_async() (hyperion.controller.cobolt.cobolt08NLD.Cobolt08NLD method)

 	
 	clear_histogram() (hyperion.controller.picoquant.hydraharp.Hydraharp method)

 	clearStopDetection() (hyperion.controller.attocube.anc350.Anc350 method)

 	Cobolt08NLD (class in hyperion.controller.cobolt.cobolt08NLD)

 	collect_spectrum() (hyperion.instrument.spectrum.winspec_instr.WinspecInstr method)

 	configurate() (hyperion.instrument.correlator.hydraharp_instrument.HydraInstrument method)

 	configure_scanner() (hyperion.instrument.position.anc_instrument.Anc350Instrument method)

 	configure_stepper() (hyperion.instrument.position.anc_instrument.Anc350Instrument method)

 	confirm_overwrite (hyperion.instrument.spectrum.winspec_instr.WinspecInstr attribute)

 	connect() (hyperion.controller.attocube.anc350.Anc350 method)

 	count_rate() (hyperion.controller.picoquant.hydraharp.Hydraharp method)

 	(hyperion.instrument.correlator.hydraharp_instrument.HydraInstrument method)

 	create_filename() (in module hyperion.tools.saving_tools)

 	create_header() (hyperion.instrument.polarization.polarimeter.Polarimeter method)

 	ctc_status (hyperion.controller.picoquant.hydraharp.Hydraharp attribute)

 	ctl_mode (hyperion.controller.cobolt.cobolt08NLD.Cobolt08NLD attribute)

 	current_sp (hyperion.controller.cobolt.cobolt08NLD.Cobolt08NLD attribute)

 	current_temp (hyperion.instrument.spectrum.winspec_instr.WinspecInstr attribute)

 	CustomFormatter (class in hyperion.core)

D

 	
 	dcInEnable() (hyperion.controller.attocube.anc350.Anc350 method)

 	dcLevel() (hyperion.controller.attocube.anc350.Anc350 method)

 	debitmask() (in module hyperion.controller.attocube.anc350)

 	delay_time_s (hyperion.instrument.spectrum.winspec_instr.WinspecInstr attribute)

 	digital_mod (hyperion.controller.cobolt.cobolt08NLD.Cobolt08NLD attribute)

 	disable_all() (hyperion.core.ANSIcolorFormat static method)

 	display_flip (hyperion.instrument.spectrum.winspec_instr.WinspecInstr attribute)

 	
 	display_reverse (hyperion.instrument.spectrum.winspec_instr.WinspecInstr attribute)

 	display_rotate (hyperion.instrument.spectrum.winspec_instr.WinspecInstr attribute)

 	do_interp() (hyperion.instrument.polarization.variable_waveplate.VariableWaveplate method)

 	DuplicateFilter (class in hyperion.core)

 	dutyCycleEnable() (hyperion.controller.attocube.anc350.Anc350 method)

 	dutyCycleOffTime() (hyperion.controller.attocube.anc350.Anc350 method)

 	dutyCyclePeriod() (hyperion.controller.attocube.anc350.Anc350 method)

E

 	
 	enable() (hyperion.controller.aa.aa_modd18012.AaModd18012 method)

 	enable_output() (hyperion.controller.agilent.agilent33522A.Agilent33522A method)

 	(hyperion.instrument.function_generator.fun_gen.FunGen method)

 	enable_voltage_limits() (hyperion.controller.agilent.agilent33522A.Agilent33522A method)

 	(hyperion.instrument.function_generator.fun_gen.FunGen method)

 	enabled (hyperion.controller.cobolt.cobolt08NLD.Cobolt08NLD attribute)

 	(hyperion.core.ANSIcolorFormat attribute)

 	end_wav (hyperion.controller.osa.osa_controller.OsaController attribute)

 	(hyperion.controller.stanford.sr830.sr830 attribute)

 	
 	enter_mod_mode (hyperion.controller.cobolt.cobolt08NLD.Cobolt08NLD attribute)

 	enter_mod_mode_async() (hyperion.controller.cobolt.cobolt08NLD.Cobolt08NLD method)

 	error_string (hyperion.controller.picoquant.hydraharp.Hydraharp attribute)

 	ExampleController (class in hyperion.controller.example_controller)

 	ExampleControllerDummy (class in hyperion.controller.example_controller)

 	ExampleInstrument (class in hyperion.instrument.example_instrument)

 	exposure_time (hyperion.instrument.spectrum.winspec_instr.WinspecInstr attribute)

 	externalStepBkwInput() (hyperion.controller.attocube.anc350.Anc350 method)

 	externalStepFwdInput() (hyperion.controller.attocube.anc350.Anc350 method)

 	externalStepInputEdge() (hyperion.controller.attocube.anc350.Anc350 method)

F

 	
 	f1 (hyperion.instrument.misc.beam_flags_instr.BeamFlagsInstr attribute)

 	f2 (hyperion.instrument.misc.beam_flags_instr.BeamFlagsInstr attribute)

 	f3 (hyperion.instrument.misc.beam_flags_instr.BeamFlagsInstr attribute)

 	fast_safe (hyperion.instrument.spectrum.winspec_instr.WinspecInstr attribute)

 	file_increment (hyperion.instrument.spectrum.winspec_instr.WinspecInstr attribute)

 	file_level (hyperion.core.LoggingManager attribute)

 	filename (hyperion.instrument.spectrum.winspec_instr.WinspecInstr attribute)

 	filter() (hyperion.core.DuplicateFilter method)

 	finalize() (hyperion.controller.aa.aa_modd18012.AaModd18012 method)

 	(hyperion.controller.agilent.agilent33522A.Agilent33522A method)

 	(hyperion.controller.attocube.anc350.Anc350 method)

 	(hyperion.controller.base_controller.BaseController method)

 	(hyperion.controller.example_controller.ExampleController method)

 	(hyperion.controller.generic.generic_serial_contr.GenericSerialController method)

 	(hyperion.controller.generic.generic_serial_contr.GenericSerialControllerDummy method)

 	(hyperion.controller.osa.osa_controller.OsaController method)

 	(hyperion.controller.picoquant.hydraharp.Hydraharp method)

 	(hyperion.controller.rs.thermometer.Rs1316 method)

 	(hyperion.controller.sk.sk_pol_ana.Skpolarimeter method)

 	(hyperion.controller.stanford.sr830.sr830 method)

 	(hyperion.controller.thorlabs.lcc25.Lcc method)

 	(hyperion.controller.thorlabs.tdc001_cube.TDC001_cube method)

 	(hyperion.instrument.base_instrument.BaseInstrument method)

 	(hyperion.instrument.correlator.hydraharp_instrument.HydraInstrument method)

 	(hyperion.instrument.example_instrument.ExampleInstrument method)

 	(hyperion.instrument.function_generator.fun_gen.FunGen method)

 	(hyperion.instrument.misc.beam_flags_instr.BeamFlagsInstr method)

 	(hyperion.instrument.polarization.aa_aotf.AaAotf method)

 	(hyperion.instrument.polarization.polarimeter.Polarimeter method)

 	(hyperion.instrument.polarization.variable_waveplate.VariableWaveplate method)

 	(hyperion.instrument.position.anc_instrument.Anc350Instrument method)

 	(hyperion.instrument.position.thorlabs_motor_instr.Thorlabsmotor method)

 	(hyperion.instrument.spectrum.osa_instrument.OsaInstrument method)

 	(hyperion.instrument.spectrum.winspec_instr.WinspecInstr method)

 	(hyperion.unit_test.agilent33522A_controller.UTestAgilent33522A method)

 	(hyperion.unit_test.fun_gen_instrument.UTestFunGen method)

 	(hyperion.unit_test.lcc_controller.UTestLcc method)

 	(hyperion.unit_test.variable_waveplate_instrument.UTestVariableWaveplate method)

 	
 	flags (hyperion.controller.picoquant.hydraharp.Hydraharp attribute)

 	format() (hyperion.core.CustomFormatter method)

 	freq (hyperion.controller.thorlabs.lcc25.Lcc attribute)

 	(hyperion.instrument.polarization.variable_waveplate.VariableWaveplate attribute)

 	frequency() (hyperion.controller.attocube.anc350.Anc350 method)

 	FunGen (class in hyperion.instrument.function_generator.fun_gen)

G

 	
 	gain (hyperion.instrument.spectrum.winspec_instr.WinspecInstr attribute)

 	GenericSerialController (class in hyperion.controller.generic.generic_serial_contr)

 	GenericSerialControllerDummy (class in hyperion.controller.generic.generic_serial_contr)

 	get_analog_value() (hyperion.instrument.polarization.variable_waveplate.VariableWaveplate method)

 	get_average_data() (hyperion.instrument.polarization.polarimeter.Polarimeter method)

 	get_axis_info() (hyperion.instrument.position.thorlabs_motor_instr.Thorlabsmotor method)

 	get_commands() (hyperion.controller.thorlabs.lcc25.Lcc method)

 	get_data() (hyperion.controller.osa.osa_controller.OsaController method)

 	(hyperion.controller.stanford.sr830.sr830 method)

 	(hyperion.instrument.polarization.polarimeter.Polarimeter method)

 	get_device_information() (hyperion.controller.sk.sk_pol_ana.Skpolarimeter method)

 	get_enable_output() (hyperion.controller.agilent.agilent33522A.Agilent33522A method)

 	get_flag() (hyperion.instrument.misc.beam_flags_instr.BeamFlagsInstr method)

 	get_frequency() (hyperion.controller.agilent.agilent33522A.Agilent33522A method)

 	(hyperion.instrument.function_generator.fun_gen.FunGen method)

 	get_information() (hyperion.instrument.polarization.polarimeter.Polarimeter method)

 	get_logger_file_level() (hyperion.core.LoggingManager method)

 	get_logger_stream_level() (hyperion.core.LoggingManager method)

 	get_multiple_data() (hyperion.instrument.polarization.polarimeter.Polarimeter method)

 	get_number_polarizers() (hyperion.controller.sk.sk_pol_ana.Skpolarimeter method)

 	get_position() (hyperion.instrument.position.anc_instrument.Anc350Instrument method)

 	get_specific_flag_state() (hyperion.instrument.misc.beam_flags_instr.BeamFlagsInstr method)

 	get_state_voltage_limits() (hyperion.controller.agilent.agilent33522A.Agilent33522A method)

 	get_states() (hyperion.controller.aa.aa_modd18012.AaModd18012 method)

 	get_status() (hyperion.instrument.polarization.aa_aotf.AaAotf method)

 	get_system_error() (hyperion.controller.agilent.agilent33522A.Agilent33522A method)

 	(hyperion.instrument.function_generator.fun_gen.FunGen method)

 	get_voltage() (hyperion.controller.agilent.agilent33522A.Agilent33522A method)

 	(hyperion.controller.thorlabs.lcc25.Lcc method)

 	get_voltage_high() (hyperion.controller.agilent.agilent33522A.Agilent33522A method)

 	(hyperion.instrument.function_generator.fun_gen.FunGen method)

 	
 	get_voltage_limits() (hyperion.controller.agilent.agilent33522A.Agilent33522A method)

 	(hyperion.instrument.function_generator.fun_gen.FunGen method)

 	get_voltage_limits_state() (hyperion.controller.agilent.agilent33522A.Agilent33522A method)

 	(hyperion.instrument.function_generator.fun_gen.FunGen method)

 	get_voltage_low() (hyperion.controller.agilent.agilent33522A.Agilent33522A method)

 	(hyperion.instrument.function_generator.fun_gen.FunGen method)

 	get_voltage_offset() (hyperion.controller.agilent.agilent33522A.Agilent33522A method)

 	(hyperion.instrument.function_generator.fun_gen.FunGen method)

 	get_voltage_vpp() (hyperion.instrument.function_generator.fun_gen.FunGen method)

 	get_waveform() (hyperion.controller.agilent.agilent33522A.Agilent33522A method)

 	(hyperion.instrument.function_generator.fun_gen.FunGen method)

 	get_wavelength() (hyperion.controller.sk.sk_pol_ana.Skpolarimeter method)

 	(hyperion.instrument.polarization.polarimeter.Polarimeter method)

 	getAcInEnable() (hyperion.controller.attocube.anc350.Anc350 method)

 	getAmplitude() (hyperion.controller.attocube.anc350.Anc350 method)

 	getBandwidthLimitEnable() (hyperion.controller.attocube.anc350.Anc350 method)

 	getDcInEnable() (hyperion.controller.attocube.anc350.Anc350 method)

 	getDcLevel() (hyperion.controller.attocube.anc350.Anc350 method)

 	getFrequency() (hyperion.controller.attocube.anc350.Anc350 method)

 	getIntEnable() (hyperion.controller.attocube.anc350.Anc350 method)

 	getLogger() (hyperion.core.LoggingManager method)

 	getPosition() (hyperion.controller.attocube.anc350.Anc350 method)

 	getReference() (hyperion.controller.attocube.anc350.Anc350 method)

 	getReferenceRotCount() (hyperion.controller.attocube.anc350.Anc350 method)

 	getROI() (hyperion.instrument.spectrum.winspec_instr.WinspecInstr method)

 	getRotCount() (hyperion.controller.attocube.anc350.Anc350 method)

 	getSpeed() (hyperion.controller.attocube.anc350.Anc350 method)

 	getStatus() (hyperion.controller.attocube.anc350.Anc350 method)

 	getStepwidth() (hyperion.controller.attocube.anc350.Anc350 method)

 	given_step() (hyperion.instrument.position.anc_instrument.Anc350Instrument method)

 	grating (hyperion.instrument.spectrum.winspec_instr.WinspecInstr attribute)

H

 	
 	hardware_info (hyperion.controller.picoquant.hydraharp.Hydraharp attribute)

 	histogram() (hyperion.controller.picoquant.hydraharp.Hydraharp method)

 	histogram_offset() (hyperion.controller.picoquant.hydraharp.Hydraharp method)

 	Hydraharp (class in hyperion.controller.picoquant.hydraharp)

 	HydraInstrument (class in hyperion.instrument.correlator.hydraharp_instrument)

 	hyperion.controller.aa.aa_modd18012 (module)

 	hyperion.controller.agilent.agilent33522A (module)

 	hyperion.controller.attocube.anc350 (module)

 	hyperion.controller.base_controller (module)

 	hyperion.controller.cobolt.cobolt08NLD (module)

 	hyperion.controller.example_controller (module)

 	hyperion.controller.generic.generic_serial_contr (module)

 	hyperion.controller.osa.osa_controller (module)

 	hyperion.controller.picoquant.hydraharp (module)

 	hyperion.controller.rs.thermometer (module)

 	hyperion.controller.sk.sk_pol_ana (module)

 	hyperion.controller.stanford.sr830 (module)

 	hyperion.controller.thorlabs.lcc25 (module)

 	hyperion.controller.thorlabs.tdc001_cube (module)

 	
 	hyperion.core (module)

 	hyperion.instrument.base_instrument (module)

 	hyperion.instrument.correlator.hydraharp_instrument (module)

 	hyperion.instrument.example_instrument (module)

 	hyperion.instrument.function_generator.fun_gen (module)

 	hyperion.instrument.misc.beam_flags_instr (module)

 	hyperion.instrument.polarization.aa_aotf (module)

 	hyperion.instrument.polarization.polarimeter (module)

 	hyperion.instrument.polarization.variable_waveplate (module)

 	hyperion.instrument.position.anc_instrument (module)

 	hyperion.instrument.position.thorlabs_motor_instr (module)

 	hyperion.instrument.spectrum.osa_instrument (module)

 	hyperion.instrument.spectrum.winspec_instr (module)

 	hyperion.tools.array_tools (module)

 	hyperion.tools.saving_tools (module)

 	hyperion.tools.ui_tools (module)

 	hyperion.unit_test.agilent33522A_controller (module)

 	hyperion.unit_test.fun_gen_instrument (module)

 	hyperion.unit_test.lcc_controller (module)

 	hyperion.unit_test.variable_waveplate_instrument (module)

I

 	
 	idn (hyperion.controller.cobolt.cobolt08NLD.Cobolt08NLD attribute)

 	idn() (hyperion.controller.agilent.agilent33522A.Agilent33522A method)

 	(hyperion.controller.base_controller.BaseController method)

 	(hyperion.controller.example_controller.ExampleController method)

 	(hyperion.controller.generic.generic_serial_contr.GenericSerialController method)

 	(hyperion.controller.osa.osa_controller.OsaControllerDummy method)

 	(hyperion.controller.thorlabs.lcc25.Lcc method)

 	(hyperion.instrument.base_instrument.BaseInstrument method)

 	(hyperion.instrument.example_instrument.ExampleInstrument method)

 	(hyperion.instrument.function_generator.fun_gen.FunGen method)

 	(hyperion.instrument.misc.beam_flags_instr.BeamFlagsInstr method)

 	(hyperion.instrument.polarization.variable_waveplate.VariableWaveplate method)

 	(hyperion.instrument.spectrum.osa_instrument.OsaInstrument method)

 	(hyperion.instrument.spectrum.winspec_instr.WinspecInstr method)

 	initialize() (hyperion.controller.aa.aa_modd18012.AaModd18012 method)

 	(hyperion.controller.agilent.agilent33522A.Agilent33522A method)

 	(hyperion.controller.attocube.anc350.Anc350 method)

 	(hyperion.controller.base_controller.BaseController method)

 	(hyperion.controller.example_controller.ExampleController method)

 	(hyperion.controller.generic.generic_serial_contr.GenericSerialControllerDummy method)

 	(hyperion.controller.osa.osa_controller.OsaController method)

 	(hyperion.controller.osa.osa_controller.OsaControllerDummy method)

 	(hyperion.controller.picoquant.hydraharp.Hydraharp method)

 	(hyperion.controller.rs.thermometer.Rs1316 method)

 	(hyperion.controller.sk.sk_pol_ana.Skpolarimeter method)

 	(hyperion.controller.stanford.sr830.sr830 method)

 	(hyperion.controller.thorlabs.lcc25.Lcc method)

 	(hyperion.controller.thorlabs.tdc001_cube.TDC001_cube method)

 	(hyperion.instrument.base_instrument.BaseInstrument method)

 	(hyperion.instrument.correlator.hydraharp_instrument.HydraInstrument method)

 	(hyperion.instrument.example_instrument.ExampleInstrument method)

 	(hyperion.instrument.misc.beam_flags_instr.BeamFlagsInstr method)

 	(hyperion.instrument.polarization.polarimeter.Polarimeter method)

 	(hyperion.instrument.polarization.variable_waveplate.VariableWaveplate method)

 	(hyperion.instrument.position.anc_instrument.Anc350Instrument method)

 	(hyperion.instrument.position.thorlabs_motor_instr.Thorlabsmotor method)

 	(hyperion.instrument.spectrum.osa_instrument.OsaInstrument method)

 	(hyperion.instrument.spectrum.winspec_instr.WinspecInstr method)

 	
 	input_CFD() (hyperion.controller.picoquant.hydraharp.Hydraharp method)

 	input_offset() (hyperion.controller.picoquant.hydraharp.Hydraharp method)

 	intEnable() (hyperion.controller.attocube.anc350.Anc350 method)

 	interlock (hyperion.controller.cobolt.cobolt08NLD.Cobolt08NLD attribute)

 	is_acquiring (hyperion.instrument.spectrum.winspec_instr.WinspecInstr attribute)

 	is_end_wav_bigger_than_start_wav() (hyperion.instrument.spectrum.osa_instrument.OsaInstrument method)

 	is_end_wav_value_correct() (hyperion.instrument.spectrum.osa_instrument.OsaInstrument method)

 	is_in_motion() (hyperion.instrument.position.thorlabs_motor_instr.Thorlabsmotor method)

 	is_start_wav_value_correct() (hyperion.instrument.spectrum.osa_instrument.OsaInstrument method)

K

 	
 	ksw_enabled (hyperion.controller.cobolt.cobolt08NLD.Cobolt08NLD attribute)

L

 	
 	Lcc (class in hyperion.controller.thorlabs.lcc25)

 	LccDummy (class in hyperion.controller.thorlabs.lcc25)

 	library_version (hyperion.controller.picoquant.hydraharp.Hydraharp attribute)

 	list_devices() (hyperion.instrument.position.thorlabs_motor_instr.Thorlabsmotor method)

 	load() (hyperion.controller.attocube.anc350.Anc350 method)

 	load_calibration() (hyperion.instrument.polarization.aa_aotf.AaAotf method)

 	(hyperion.instrument.polarization.variable_waveplate.VariableWaveplate method)

 	
 	load_config() (hyperion.controller.picoquant.hydraharp.Hydraharp method)

 	(hyperion.instrument.spectrum.osa_instrument.OsaInstrument method)

 	load_controller() (hyperion.instrument.base_instrument.BaseInstrument method)

 	load_defaults() (hyperion.instrument.function_generator.fun_gen.FunGen method)

 	load_properties() (hyperion.controller.aa.aa_modd18012.AaModd18012Dummy method)

 	(hyperion.controller.agilent.agilent33522A.Agilent33522ADummy method)

 	(hyperion.controller.thorlabs.lcc25.LccDummy method)

 	LoggingManager (class in hyperion.core)

M

 	
 	make_histogram() (hyperion.instrument.correlator.hydraharp_instrument.HydraInstrument method)

 	make_step() (hyperion.instrument.position.thorlabs_motor_instr.Thorlabsmotor method)

 	Measurement_mode (class in hyperion.controller.picoquant.hydraharp)

 	mod_mode (hyperion.controller.cobolt.cobolt08NLD.Cobolt08NLD attribute)

 	mode (hyperion.controller.thorlabs.lcc25.Lcc attribute)

 	(hyperion.instrument.polarization.variable_waveplate.VariableWaveplate attribute)

 	motion_error() (hyperion.instrument.position.thorlabs_motor_instr.Thorlabsmotor method)

 	motor_current_limit_reached() (hyperion.instrument.position.thorlabs_motor_instr.Thorlabsmotor method)

 	move_absolute() (hyperion.instrument.position.thorlabs_motor_instr.Thorlabsmotor method)

 	move_continuous() (hyperion.instrument.position.anc_instrument.Anc350Instrument method)

 	move_home() (hyperion.instrument.position.thorlabs_motor_instr.Thorlabsmotor method)

 	
 	move_relative() (hyperion.instrument.position.anc_instrument.Anc350Instrument method)

 	(hyperion.instrument.position.thorlabs_motor_instr.Thorlabsmotor method)

 	move_scanner() (hyperion.instrument.position.anc_instrument.Anc350Instrument method)

 	move_to() (hyperion.instrument.position.anc_instrument.Anc350Instrument method)

 	move_velocity() (hyperion.instrument.position.thorlabs_motor_instr.Thorlabsmotor method)

 	moveAbsolute() (hyperion.controller.attocube.anc350.Anc350 method)

 	moveAbsoluteSync() (hyperion.controller.attocube.anc350.Anc350 method)

 	moveContinuous() (hyperion.controller.attocube.anc350.Anc350 method)

 	moveReference() (hyperion.controller.attocube.anc350.Anc350 method)

 	moveRelative() (hyperion.controller.attocube.anc350.Anc350 method)

 	moveSingleStep() (hyperion.controller.attocube.anc350.Anc350 method)

 	moving_loop() (hyperion.instrument.position.thorlabs_motor_instr.Thorlabsmotor method)

N

 	
 	name_incrementer() (in module hyperion.tools.saving_tools)

 	
 	nm_axis() (hyperion.instrument.spectrum.winspec_instr.WinspecInstr method)

 	number_input_channels (hyperion.controller.picoquant.hydraharp.Hydraharp attribute)

O

 	
 	operating_hours (hyperion.controller.cobolt.cobolt08NLD.Cobolt08NLD attribute)

 	optical_resolution (hyperion.controller.osa.osa_controller.OsaController attribute)

 	(hyperion.controller.stanford.sr830.sr830 attribute)

 	OsaController (class in hyperion.controller.osa.osa_controller)

 	
 	OsaControllerDummy (class in hyperion.controller.osa.osa_controller)

 	OsaInstrument (class in hyperion.instrument.spectrum.osa_instrument)

 	output (hyperion.controller.thorlabs.lcc25.Lcc attribute)

 	(hyperion.instrument.polarization.variable_waveplate.VariableWaveplate attribute)

 	output_state() (hyperion.instrument.function_generator.fun_gen.FunGen method)

P

 	
 	passive_update_from_manual_changes() (hyperion.instrument.misc.beam_flags_instr.BeamFlagsInstr method)

 	perform_single_sweep() (hyperion.controller.osa.osa_controller.OsaController method)

 	(hyperion.controller.stanford.sr830.sr830 method)

 	pint_to_spin_combo() (in module hyperion.tools.ui_tools)

 	
 	Polarimeter (class in hyperion.instrument.polarization.polarimeter)

 	position() (hyperion.instrument.position.thorlabs_motor_instr.Thorlabsmotor method)

 	power (hyperion.controller.cobolt.cobolt08NLD.Cobolt08NLD attribute)

 	power_sp (hyperion.controller.cobolt.cobolt08NLD.Cobolt08NLD attribute)

Q

 	
 	quadratureAxis() (hyperion.controller.attocube.anc350.Anc350 method)

 	quadratureInputPeriod() (hyperion.controller.attocube.anc350.Anc350 method)

 	quadratureOutputPeriod() (hyperion.controller.attocube.anc350.Anc350 method)

 	quarter_waveplate_voltage() (hyperion.instrument.polarization.variable_waveplate.VariableWaveplate method)

 	query() (hyperion.controller.aa.aa_modd18012.AaModd18012 method)

 	(hyperion.controller.agilent.agilent33522A.Agilent33522A method)

 	(hyperion.controller.example_controller.ExampleController method)

 	(hyperion.controller.example_controller.ExampleControllerDummy method)

 	(hyperion.controller.generic.generic_serial_contr.GenericSerialController method)

 	(hyperion.controller.generic.generic_serial_contr.GenericSerialControllerDummy method)

 	(hyperion.controller.osa.osa_controller.OsaController method)

 	(hyperion.controller.osa.osa_controller.OsaControllerDummy method)

 	(hyperion.controller.stanford.sr830.sr830 method)

 	(hyperion.controller.thorlabs.lcc25.Lcc method)

 	(hyperion.controller.thorlabs.lcc25.LccDummy method)

R

 	
 	read() (hyperion.controller.aa.aa_modd18012.AaModd18012 method)

 	(hyperion.controller.aa.aa_modd18012.AaModd18012Dummy method)

 	(hyperion.controller.agilent.agilent33522A.Agilent33522A method)

 	(hyperion.controller.agilent.agilent33522A.Agilent33522ADummy method)

 	(hyperion.controller.example_controller.ExampleController method)

 	(hyperion.controller.osa.osa_controller.OsaControllerDummy method)

 	(hyperion.controller.thorlabs.lcc25.Lcc method)

 	(hyperion.controller.thorlabs.lcc25.LccDummy method)

 	read_lines() (hyperion.controller.generic.generic_serial_contr.GenericSerialController method)

 	read_netcdf4_and_plot_all() (in module hyperion.tools.saving_tools)

 	
 	read_serial_buffer_in() (hyperion.controller.generic.generic_serial_contr.GenericSerialControllerDummy method)

 	(hyperion.controller.thorlabs.lcc25.Lcc method)

 	Reference_clock (class in hyperion.controller.picoquant.hydraharp)

 	remove_file_handlers() (hyperion.core.LoggingManager method)

 	remove_stream_handler() (hyperion.core.LoggingManager method)

 	resetPosition() (hyperion.controller.attocube.anc350.Anc350 method)

 	resolution (hyperion.controller.picoquant.hydraharp.Hydraharp attribute)

 	restart (hyperion.controller.cobolt.cobolt08NLD.Cobolt08NLD attribute)

 	restart_async() (hyperion.controller.cobolt.cobolt08NLD.Cobolt08NLD method)

 	Rs1316 (class in hyperion.controller.rs.thermometer)

S

 	
 	sample_points (hyperion.controller.osa.osa_controller.OsaController attribute)

 	(hyperion.controller.stanford.sr830.sr830 attribute)

 	save_as_netCDF4() (hyperion.instrument.polarization.polarimeter.Polarimeter method)

 	save_data() (hyperion.instrument.polarization.polarimeter.Polarimeter method)

 	save_metadata() (in module hyperion.tools.saving_tools)

 	save_netCDF4() (in module hyperion.tools.saving_tools)

 	saveas() (hyperion.instrument.spectrum.winspec_instr.WinspecInstr method)

 	sensitivity (hyperion.controller.osa.osa_controller.OsaController attribute)

 	(hyperion.controller.stanford.sr830.sr830 attribute)

 	sensorPowerGroupA() (hyperion.controller.attocube.anc350.Anc350 method)

 	sensorPowerGroupB() (hyperion.controller.attocube.anc350.Anc350 method)

 	set_all() (hyperion.controller.aa.aa_modd18012.AaModd18012 method)

 	set_all_values() (hyperion.instrument.polarization.aa_aotf.AaAotf method)

 	set_analog_value() (hyperion.instrument.polarization.variable_waveplate.VariableWaveplate method)

 	set_axis_info() (hyperion.instrument.position.thorlabs_motor_instr.Thorlabsmotor method)

 	set_defaults() (hyperion.instrument.polarization.aa_aotf.AaAotf method)

 	set_file() (hyperion.core.LoggingManager method)

 	set_flag() (hyperion.instrument.misc.beam_flags_instr.BeamFlagsInstr method)

 	set_frequency() (hyperion.controller.aa.aa_modd18012.AaModd18012 method)

 	(hyperion.controller.agilent.agilent33522A.Agilent33522A method)

 	(hyperion.instrument.function_generator.fun_gen.FunGen method)

 	set_frequency_all_range() (hyperion.instrument.polarization.aa_aotf.AaAotf method)

 	set_histogram() (hyperion.instrument.correlator.hydraharp_instrument.HydraInstrument method)

 	set_logger_file_level() (hyperion.core.LoggingManager method)

 	set_logger_stream_level() (hyperion.core.LoggingManager method)

 	set_operating_mode() (hyperion.controller.aa.aa_modd18012.AaModd18012 method)

 	set_powerdb() (hyperion.controller.aa.aa_modd18012.AaModd18012 method)

 	set_quarter_waveplate_voltage() (hyperion.instrument.polarization.variable_waveplate.VariableWaveplate method)

 	set_settings_for_osa() (hyperion.controller.osa.osa_controller.OsaController method)

 	(hyperion.controller.stanford.sr830.sr830 method)

 	set_specific_flag_state() (hyperion.instrument.misc.beam_flags_instr.BeamFlagsInstr method)

 	set_stream() (hyperion.core.LoggingManager method)

 	set_temperature_limits() (hyperion.instrument.position.anc_instrument.Anc350Instrument method)

 	set_voltage() (hyperion.controller.agilent.agilent33522A.Agilent33522A method)

 	(hyperion.controller.thorlabs.lcc25.Lcc method)

 	set_voltage_high() (hyperion.controller.agilent.agilent33522A.Agilent33522A method)

 	(hyperion.instrument.function_generator.fun_gen.FunGen method)

 	set_voltage_limits() (hyperion.controller.agilent.agilent33522A.Agilent33522A method)

 	(hyperion.instrument.function_generator.fun_gen.FunGen method)

 	set_voltage_low() (hyperion.controller.agilent.agilent33522A.Agilent33522A method)

 	(hyperion.instrument.function_generator.fun_gen.FunGen method)

 	set_voltage_offset() (hyperion.controller.agilent.agilent33522A.Agilent33522A method)

 	(hyperion.instrument.function_generator.fun_gen.FunGen method)

 	
 	set_voltage_vpp() (hyperion.instrument.function_generator.fun_gen.FunGen method)

 	set_waveform() (hyperion.controller.agilent.agilent33522A.Agilent33522A method)

 	(hyperion.instrument.function_generator.fun_gen.FunGen method)

 	set_wavelength() (hyperion.instrument.polarization.aa_aotf.AaAotf method)

 	setHardwareId() (hyperion.controller.attocube.anc350.Anc350 method)

 	setOutput() (hyperion.controller.attocube.anc350.Anc350 method)

 	setROI() (hyperion.instrument.spectrum.winspec_instr.WinspecInstr method)

 	setStopDetectionSticky() (hyperion.controller.attocube.anc350.Anc350 method)

 	setTargetGround() (hyperion.controller.attocube.anc350.Anc350 method)

 	setTargetPos() (hyperion.controller.attocube.anc350.Anc350 method)

 	shutter_control (hyperion.instrument.spectrum.winspec_instr.WinspecInstr attribute)

 	singleCircleMode() (hyperion.controller.attocube.anc350.Anc350 method)

 	Singleton (class in hyperion.core)

 	Skpolarimeter (class in hyperion.controller.sk.sk_pol_ana)

 	SkpolarimeterDummy (class in hyperion.controller.sk.sk_pol_ana)

 	spec_mode (hyperion.instrument.spectrum.winspec_instr.WinspecInstr attribute)

 	spin_combo_to_pint_apply_limits() (in module hyperion.tools.ui_tools)

 	sr830 (class in hyperion.controller.stanford.sr830)

 	start_acquiring() (hyperion.instrument.spectrum.winspec_instr.WinspecInstr method)

 	start_measurement() (hyperion.controller.picoquant.hydraharp.Hydraharp method)

 	(hyperion.controller.sk.sk_pol_ana.Skpolarimeter method)

 	(hyperion.instrument.polarization.polarimeter.Polarimeter method)

 	start_wav (hyperion.controller.osa.osa_controller.OsaController attribute)

 	(hyperion.controller.stanford.sr830.sr830 attribute)

 	staticAmplitude() (hyperion.controller.attocube.anc350.Anc350 method)

 	status (hyperion.controller.cobolt.cobolt08NLD.Cobolt08NLD attribute)

 	stepCount() (hyperion.controller.attocube.anc350.Anc350 method)

 	stop_histogram() (hyperion.instrument.correlator.hydraharp_instrument.HydraInstrument method)

 	stop_measurement() (hyperion.controller.picoquant.hydraharp.Hydraharp method)

 	(hyperion.controller.sk.sk_pol_ana.Skpolarimeter method)

 	(hyperion.instrument.polarization.polarimeter.Polarimeter method)

 	stop_moving() (hyperion.instrument.position.anc_instrument.Anc350Instrument method)

 	(hyperion.instrument.position.thorlabs_motor_instr.Thorlabsmotor method)

 	stop_overflow() (hyperion.controller.picoquant.hydraharp.Hydraharp method)

 	stopApproach() (hyperion.controller.attocube.anc350.Anc350 method)

 	stopDetection() (hyperion.controller.attocube.anc350.Anc350 method)

 	stopMoving() (hyperion.controller.attocube.anc350.Anc350 method)

 	store() (hyperion.controller.aa.aa_modd18012.AaModd18012 method)

 	stream_level (hyperion.core.LoggingManager attribute)

 	sync_CFD() (hyperion.controller.picoquant.hydraharp.Hydraharp method)

 	sync_divider() (hyperion.controller.picoquant.hydraharp.Hydraharp method)

 	sync_offset() (hyperion.controller.picoquant.hydraharp.Hydraharp method)

 	sync_rate() (hyperion.controller.picoquant.hydraharp.Hydraharp method)

 	(hyperion.instrument.correlator.hydraharp_instrument.HydraInstrument method)

T

 	
 	take_spectrum() (hyperion.instrument.spectrum.osa_instrument.OsaInstrument method)

 	(hyperion.instrument.spectrum.winspec_instr.WinspecInstr method)

 	take_spectrum_alt() (hyperion.instrument.spectrum.winspec_instr.WinspecInstr method)

 	target_temp (hyperion.instrument.spectrum.winspec_instr.WinspecInstr attribute)

 	TDC001_cube (class in hyperion.controller.thorlabs.tdc001_cube)

 	TDC001_cubeDummy (class in hyperion.controller.thorlabs.tdc001_cube)

 	temp_locked (hyperion.instrument.spectrum.winspec_instr.WinspecInstr attribute)

 	test_all_amplitudes() (hyperion.unit_test.agilent33522A_controller.UTestAgilent33522A method)

 	test_amplitude() (hyperion.unit_test.agilent33522A_controller.UTestAgilent33522A method)

 	test_enable_output() (hyperion.unit_test.agilent33522A_controller.UTestAgilent33522A method)

 	test_freq() (hyperion.unit_test.agilent33522A_controller.UTestAgilent33522A method)

 	(hyperion.unit_test.lcc_controller.UTestLcc method)

 	(hyperion.unit_test.variable_waveplate_instrument.UTestVariableWaveplate method)

 	test_mode() (hyperion.unit_test.agilent33522A_controller.UTestAgilent33522A method)

 	(hyperion.unit_test.lcc_controller.UTestLcc method)

 	(hyperion.unit_test.variable_waveplate_instrument.UTestVariableWaveplate method)

 	
 	test_output() (hyperion.unit_test.lcc_controller.UTestLcc method)

 	(hyperion.unit_test.variable_waveplate_instrument.UTestVariableWaveplate method)

 	test_voltage() (hyperion.unit_test.lcc_controller.UTestLcc method)

 	(hyperion.unit_test.variable_waveplate_instrument.UTestVariableWaveplate method)

 	Thorlabsmotor (class in hyperion.instrument.position.thorlabs_motor_instr)

 	timing_mode (hyperion.instrument.spectrum.winspec_instr.WinspecInstr attribute)

 	trigger() (hyperion.controller.attocube.anc350.Anc350 method)

 	triggerAxis() (hyperion.controller.attocube.anc350.Anc350 method)

 	triggerEpsilon() (hyperion.controller.attocube.anc350.Anc350 method)

 	triggerModeIn() (hyperion.controller.attocube.anc350.Anc350 method)

 	triggerModeOut() (hyperion.controller.attocube.anc350.Anc350 method)

 	triggerPolarity() (hyperion.controller.attocube.anc350.Anc350 method)

U

 	
 	update_all_positions() (hyperion.instrument.position.anc_instrument.Anc350Instrument method)

 	update_all_states() (hyperion.instrument.misc.beam_flags_instr.BeamFlagsInstr method)

 	updateAbsolute() (hyperion.controller.attocube.anc350.Anc350 method)

 	
 	UTestAgilent33522A (class in hyperion.unit_test.agilent33522A_controller)

 	UTestFunGen (class in hyperion.unit_test.fun_gen_instrument)

 	UTestLcc (class in hyperion.unit_test.lcc_controller)

 	UTestVariableWaveplate (class in hyperion.unit_test.variable_waveplate_instrument)

V

 	
 	VariableWaveplate (class in hyperion.instrument.polarization.variable_waveplate)

W

 	
 	wait_for_osa() (hyperion.controller.osa.osa_controller.OsaController method)

 	(hyperion.controller.stanford.sr830.sr830 method)

 	wait_till_finished() (hyperion.instrument.correlator.hydraharp_instrument.HydraInstrument method)

 	wait_to_measure() (hyperion.controller.sk.sk_pol_ana.Skpolarimeter method)

 	warnings (hyperion.controller.picoquant.hydraharp.Hydraharp attribute)

 	warnings_text (hyperion.controller.picoquant.hydraharp.Hydraharp attribute)

 	wavelength_to_frequency() (hyperion.instrument.polarization.aa_aotf.AaAotf method)

 	WinspecInstr (class in hyperion.instrument.spectrum.winspec_instr)

 	
 	write() (hyperion.controller.aa.aa_modd18012.AaModd18012 method)

 	(hyperion.controller.aa.aa_modd18012.AaModd18012Dummy method)

 	(hyperion.controller.agilent.agilent33522A.Agilent33522A method)

 	(hyperion.controller.agilent.agilent33522A.Agilent33522ADummy method)

 	(hyperion.controller.example_controller.ExampleController method)

 	(hyperion.controller.generic.generic_serial_contr.GenericSerialControllerDummy method)

 	(hyperion.controller.osa.osa_controller.OsaControllerDummy method)

 	(hyperion.controller.thorlabs.lcc25.Lcc method)

 	(hyperion.controller.thorlabs.lcc25.LccDummy method)

Y

 	
 	yaml_dump_builtin_types_only() (in module hyperion.tools.saving_tools)

Z

 	
 	zero_scanners() (hyperion.instrument.position.anc_instrument.Anc350Instrument method)

 _static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to the Hyperion documentation!

 		
 About

 		
 Overview

 		
 Features

 		
 Logging

 		
 Easy connection

 		
 Lantz-compatibility

 		
 ‘smart’ scan

 		
 Master GUI

 		
 Hyperion Architecture

 		
 General structure

 		
 Important concepts

 		
 Detailed documentation

 		
 Controllers

 		
 Experiment

 		
 Instruments

 		
 Testing

 		
 Tools

 		
 View and GUI

 		
 Hyperion Core Utilities

 		
 How to install

 		
 Authors

_static/file.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/logo_hyperion.png
Hyperion
python

&

powered

_static/minus.png

_static/up-pressed.png

_static/up.png

